Tujuan Persamaan Beda Dynamics of Economic System with Overlapping- Generation Model

I PENDAHULUAN

1.1 Latar Belakang

Perkembangan kegiatan dalam perekonomian dapat ditunjukkan dengan bertambahnya barang dan jasa yang diproduksi dalam masyarakat. Setiap negara di dunia berpacu memajukan ekonomi bangsanya. Pertumbuhan ekonomi suatu negara merupakan parameter bagi instrumen negara dalam memanfaatkan semua potensi dan kekayaan negara demi membangun ekonomi makro. Hal ini menjadi penting karena kondisi ekonomi menjadi faktor utama dalam menjaga stabilitas suatu negara. Pertumbuhan ekonomi pada akhir tahun tujuh puluhan telah banyak diteliti oleh para ekonom, tetapi belum ada kesepakatan tentang penyebab terjadinya pertumbuhan tersebut. Beberapa ekonom yang mengikuti aliran neoklasik menekankan pada penyediaan tenaga kerja, stok modal, dan perubahan teknologi dalam proses pertumbuhan ekonomi. Ekonom lainnya mengikuti aliran keynesian yang menekankan pada faktor permintaan. Pendekatan keynesian menitikberatkan ekspor regional sebagai penggerak pertumbuhan ekonomi. Saat ini banyak ekonom yang tertarik kembali untuk melakukan studi di bidang pertumbuhan ekonomi. Hal ini disebabkan oleh adanya teori baru yang memprediksi pentingnya memasukkan faktor eksternalitas berupa inovasi teknologi dan sumber daya manusia SDM sebagai faktor penggerak pertumbuhan ekonomi. Berdasarkan teori ini dapat memperlihatkan bahwa karakteristik awal setiap sistem perekonomian dapat menyebabkan perbedaan pertumbuhan pendapatan per kapita. Salah satu tokoh ekonomi terkenal yang menganut aliran neoklasik adalah Robert Solow. Analisis teori pertumbuhan ekonomi yang dilakukannya menghasilkan model pertumbuhan yang disebut dengan Solow growth model. Model pertumbuhan Solow menunjukkan interaksi tabungan, pertumbuhan populasi, dan kemajuan teknologi dalam mempengaruhi tingkat output perekonomian dan pertumbuhannya sepanjang waktu. Tingkat pertumbuhan ekonomi dapat dihitung melalui beberapa pendekatan, yaitu pendekatan pendapatan, pendekatan modal, dan pendekatan pengeluaran. Sampai saat ini banyak para ekonom yang meneliti model ekonomi yang sesuai mendekati rutinitas kegiatan masyarakat sehingga dapat diperoleh model yang sesuai untuk memperlihatkan kestabilan suatu negara. Salah satu model ekonomi yang mendekati rutinitas kehidupan masyarakat adalah model overlapping- generation OLG. Model ini mampu menjadi model kunci secara makroekonomi modern yang mengaplikasikan siklus kehidupan manusia. Perekonomian setiap periode pastinya berbeda dengan perekonomian pada periode sebelum atau pun sesudahnya. Setiap negara berusaha meningkatkan perekonomian sehingga menuju ke suatu kondisi yang stabil. Dengan adanya pergantian populasi ini akan lebih mudah mengatur model waktu diskret. Karya ilmiah ini merumuskan model dinamika sistem ekonomi dengan waktu diskret dan menganalisis sistem ekonomi sesuai dengan teori pertumbuhan Solow.

1.2 Tujuan

Tujuan penulisan karya ilmiah ini adalah 1. Menganalisis dinamika sistem ekonomi diskret dengan memaksimalkan utilitas waktu hidup dengan kendala pada konsumsi dalam dua periode kehidupan, yang disebut dengan model overlapping- generation. 2. Melakukan simulasi terhadap model. II LANDASAN TEORI Pada bagian ini akan diuraikan beberapa definisi dan penjelasan istilah-istilah yang digunakan dalam karya ilmiah ini. Persamaan Diferensial Biasa Persamaan diferensial biasa merupakan suatu persamaan yang melibatkan turunan pertama atau ordo lebih tinggi dari fungsi sebarang, atau peubah tak bebas terhadap peubah bebasnya. Suatu persamaan diferensial biasa orde satu dapat dinyatakan sebagai berikut , , , , … , dengan merupakan peubah tak bebas dan peubah bebas. Farlow 1994

2.1 Persamaan Beda

Konsep persamaan beda difference equation digunakan dalam analisis sistem dinamik dengan variabel diskret untuk menunjukkan dinamika atau perubahan suatu variabel pada periode tertentu. Untuk fungsi , nilai berubah bila nilai berubah dari integer yang satu ke integer berikutnya, misal , , , dan seterusnya. Pola perubahan digambarkan dengan istilah ‘beda’ difference. Misalkan ∆ menunjukkan besar perubahan pada dua periode berurutan, sehingga dapat ditulis ∆ , dengan adalah nilai pada periode ke- . Sedangkan menunjukkan nilai pada satu periode setelah periode ke- . Bentuk di atas dapat ditulis ∆ , ∆ , ∆ , … … … … … … … …. Misalkan , maka kita dapat menyatakan sebagai fungsi dari , … , . Hal yang sama berlaku juga sebaliknya, dalam hal ini jika persamaan berbentuk ∆ . Chiang Wainwright 2005 Turunan Turunan digunakan untuk mengukur tingkat perubahan sesaat variabel takbebas jika terjadi perubahan unit yang sangat kecil dalam variabel bebas. Turunan fungsi pada bilangan dinyatakan dengan ′ adalah ′ lim , jika limit ini ada. Jika , maka dan mendekati 0 jika dan hanya jika mendekati . Sehingga dapat ditulis ′ lim . Stewart 1998 Prinsip Maksimum dan Minimum Fungsi Penerapan dari turunan kedua salah satunya adalah menguji nilai maksimum dan minimum terkait kecekungan. Dalam kalkulus dikenal dengan sebutan Uji Turunan Kedua. Andaikan kontinu di sekitar , a Jika ′ dan , maka mempunya nilai minimum lokal pada . b Jika ′ dan , maka mempunya nilai maksimum lokal pada . Stewart 1998 Kemonotonan Fungsi Andaikan fungsi terdefinisi pada selang terbuka, tertutup, atau bukan keduanya. Dikatakan bahwa i. adalah naik pada jika untuk setiap pasang bilangan dan dalam . ii. adalah turun pada jika untuk setiap pasang bilangan dan dalam . iii. monoton murni pada jika ia naik pada atau turun pada . Purcell Varberg 1999

2.2 Sistem Dinamik Definisi 1 Sistem Dinamik