Flue Gas Mixture Properties Calculation
Flue Gas Mixture Properties Calculation
Flue gas streams with different gas analysis often mix, and the final gas analysis is required to be determined to evaluate the mixture gas properties. This simple procedure is illus- trated in the following example.
Example F.3
Determine the mixture volumetric analysis of 50,000 kg/h of air (with analysis % vol-
ume H 2 O = 1, N 2 = 78, O 2 = 21) that mixes with 10,000 kg/h of flue gases having an analy-
sis % volume CO 2 = 8, H 2 O = 18, N 2 = 71, O 2 = 3.
Solution
In steam generators, flue gas recirculation is widely adopted to lower NO x emissions. The duct carrying the flue gases (often from economizer exit) should be insulated; else, water dew point temperature could be reached in the duct itself or as soon as it is mixed with cold air. In order to estimate the water dew point after mixing, the flue gas analysis of the mixture must be known.
First convert the % volume to % weight basis for both the streams. MW of air = 0.01 × 18 + 0.78 × 28 + 0.21 × 32 = 28.74. % weight H 2 O = 100 × 0.01 ×
18/28.74 = 0.626.% weight of N 2 = 100 × 0.78 × 28/28.74 = 76. % weight O 2 = 100 × 0.21 × 32/28.74 = 23.38
Hence, amount of water vapor in air = 50,000 × 0.00626 = 313 kg/h Amount of N 2 = 50,000 × 0.76 = 38,000 kg/h. Amount of O 2 = 11,687 kg/h Similarly, MW of flue gas = 0.08 × 44 + 0.18 × 18 + 0.71 × 28 + 0.03 × 32 = 27.6 % weight of CO 2 = 8 × 44/27.6 = 12.75. % weight H 2 O = 18 × 18/27.6 = 11.74 % weight of N 2 = 71 × 28/27.6 = 72. % weight O 2 = 3 × 32/27.6 = 3.48 Amount of CO 2 = 10,000 × 0.1275 = 1,275 kg/h
H 2 O = 0.1174 × 10,000 = 1,174 kg/h N 2 = 0.72 × 10,000 = 7,200 kg/h
O 2 = 0.0348 × 10,000 = 348 kg/h
Total CO 2 in mixture = 1,275 kg/h. Amount of H 2 O = 1,174 + 313 = 1,487 kg/h Amount of N 2 = 38,000 + 7,200 = 45,200 kg/h. Amount of O 2 = 11,687 + 348 = 12,035 kg/h
Converting to % volume basis: total moles = 1,275/44 + 1,487/18 + 45,200/28 + 12,035/32 = 2,102 % volume CO 2 = 100 × (1275/44)/2102 = 1.38, % volume H 2 O = 100 × (1487/18)/2102 = 3.93 % volume N 2 = 100 × 45,200/28/2,102 = 76.8 and % volume O 2 = 17.89 The water vapor dew point based on 0.0393 kg/cm 2 a gas partial pressure is 29°C. The effect of gas pressure on properties is discussed in Appendices B and C. Properties of saturated water are required for estimating the natural convection or
condensation heat transfer coefficients. This is given in Table F.13.
Here is a compilation of important formulas used for heat transfer and pressure drop calculations inside and outside tubes (Table F.14).
454 Appendix F: Properties of Gases
TABLE F.13
Properties of Saturated Water
(°F) (Btu/lb °F)
(lb/ft 3 )
(lb/ft h)
(ft 2 /h)
(Btu/h ft °F)
(ft 2 /h)
(R –1 ) N
Appendix F: Properties of Gases 455
TABLE F.14
Important Formulae in All Three Units
SI Units
British Units
Metric Units
Heat transfer inside tubes h c = 0.0278w 0.8 (C p /µ) 0.4 k 0.6 /d i 1.8 h c = 2.44w 0.8 (C p /µ) 0.4 k 0.6 /d i 1.8 h c = 0.0278(C p /µ) 0.4 k 0.6 w 0.8 /d i 1.8
h c = 0.0278Cw 0.8 /d i 1.8 h c = 2.44Cw 0.8 /d i 1.8 h c = 0.0278Cw 0.8 /d i 1.8 h c , W/m 2 K
h c , kcal/m 2 h °C w, kg/s
h c , Btu/ft 2 h °F
w, kg/h d i ,m
w, lb/h
d i ,m C p , J/kg K
d i , in.
C p , kcal/kg °C µ, kg/m s
C p , Btu/lb °F
µ, kg/m h k, W/m K
µ, lb/ft h
k, Btu/ft h °F
k, kcal/m h °C
C, multiply C SI by 0.001229 V = 1.246wv/d i 2 V = 0.05wv/d i 2 V = 3.461 × 10 −4 wv/d i 2 v, m 3 /kg
C SI = (C p /µ) 0.4 k 0.6 C, multiply C SI by 0.001134
m 3 /kg V, velocity in m/s
ft 3 /lb
m/s Re = 1.273w/(d i µ)
ft/s
Re = 1.273w/(d i µ) Density of gas, air
Re = 15.2w/(d i µ)
ρ = 1.203 × 10 −4 MW P/T
ρ = 11.792 MW P/T P abs pressure, Pa
ρ = 0.0933MW P/T
kg/cm 2 a T, K
Psia
T, °R
T, K ρ , kg/m 3 ρ , lb/ft 3 ρ , kg/m 3
Pressure drop inside tubes, duct ΔP = 810 × 10 −6 fL e vw 2/ di 5 ΔP = 3.36 × 10 −6 fL e vw 2/ d i 5 ΔP = 0.6375 × 10 −12 fL e vw 2/ d i 5 w, kg/s
w, kg/h ΔP, kPa
w, lb/h
ΔP, kg/cm 2 L e ,m
d i ,m Pressure drop of flue gas, air
d i , in.
ΔP = 0.08262fL e vw 2 /d i 5 ΔP = 93 × 10 −6 fL e vw 2/ d i 5 ΔP = 6.382 × 10 −9 fL e vw 2/ d i 5 ΔP, mm wc in above equation
ΔP, mm wc Natural convection coefficient
ΔP, in wc
Nu = 0.54[d 3 ρ 2 gbΔTC p /(µk)] 0.25 Nu = 0.54[d 3 ρ 2 gbΔTC p /(µk)] 0.25 Nu = 0.54[d 3 ρ 2 gbΔTC p /(µk)] 0.25 h c = 0.953[k 3 ρ 2 bΔTC p /(µd o )] 0.25 h c = 144[k 3 ρ 2 bΔTC p /(µd o )] 0.25 h c = 57.2[k 3 ρ 2 bΔTC p /(µd o )] 0.25 h c , W/m 2 K
kcal/m 2 h °C d o , tube OD, m
Btu/ft 2 h °F
ft
M ρ , density, kg/m 3 lb/ft 3 kg/m 3
g, acceleration gravity 32 × 3600 2 ft/h 2 9.8 × 3600 2 m/h 2 b, expansion coefficient, 1/K
kcal/m h °C µ, kg/m s
Btu/ft h °F
kg/m h C p , J/kg K
lb/ft h
Btu/lb °F
kcal/kg °C (Continued)
456 Appendix F: Properties of Gases
TABLE F.14 (Continued)
Important Formulae in All Three Units
SI Units
British Units
Metric Units
Gas pressure drop outside tubes ΔP g = 0.204fG 2 N d /ρ g ΔP g = 9.3 × 10 −10 fG 2 N d /ρ g ΔP g = 1.574 × 10 −8 fG 2 N d /ρ g
ΔP g , mm wc
ΔP g , mm wc G, kg/m 2 s
ΔP g , in wc
2 G, lb/ft h G, kg/m 2 h ρ g , kg/m 3 ρ g , lb/ft 3 ρ g , kg/m 3 N d , number of rows deep
Pressure drop in two-phase flow ΔP a = 7.65 × 10 −11 v f Gi 2 r2
ΔP a = 7.8 × 10 −13 v f Gi 2 r2 ΔP f = 38 × 10 −12 fv f LG i 2 r3/d i
1.664 × 10 −11 v f G 2 r2
ΔP f = 0.388 × 10 −12 fv f LG i 2 r3/d i ΔP g = 0.00981Lr4/v f 0.00695Lr4/v f ΔP g = 0.0001Lr4/v f G, kg/m 2 h lb/ft 2 h G, kg/m 2 h w, kg/s
4 × 10 −10 fv f LG 2 r3/d i
w, kg/s L, m
lb/h
L, m f, Moody’s friction factor
ft
f, Moody’s friction factor d i ,m
Fanning friction factor = Moody’s/4
kPa Note: This table is a compilation of important formulas used for heat transfer and pressure drop calculations
psi
inside and outside tubes.
Properties of steam and water are provided in Tables F.15 through F.25.
TABLE F.15
p p Thermodynamic Properties of Dry Saturated Steam—Pressure Table
en d
ix F
Internal Energy Abs Press.,
Abs Specific Volume
Temp. Sat. Liquid
Sat. Vapor
Sat. Liquid
Evap.
Sat. Vapor
Sat. Liquid
Evap.
Sat. Vapor
Sat. Liquid
Sat. Vapor Press.,
psi. p °Fi v f h e h f h fe h e s f s fe s e u e u e psi p
ro p
1.0 er
2.0 s of G tie
4.0 a
5.0 s se
(Continued)
TABLE F.15 (Continued)
Thermodynamic Properties of Dry Saturated Steam—Pressure Table
Internal Energy Abs
Specific Volume
Enthalpy
Entropy
Abs Press.,
Sat. Vapor Press., psi. p
Temp. Sat. Liquid
Sat. Vapor
Sat. Liquid
Evap.
Sat. Vapor
Sat. Liquid
Evap.
Sat. Vapor
Sat. Liquid
°Fi v f h e h f h fe h e s f s fe s e u e u e psi p
en d
ix F
:P
ro
p er
tie
s of G
a se s
872.9 3206 Source: Abridged from Keenan, J.H.and Keyes, F.G., Thermodynamic Properties of Steam, John Wiley & Sons, Inc., New York, 1937.
TABLE F.16
Thermodynamic Properties of Dry Saturated Steam—Temperature Table
Specific Volume
Enthalpy
Entropy
Abs Sat.
Temp., °Fi
Temp., Press., Liquid
p 984.1 ro 1142.0 1.5147 1.7932 190
er tie
s of G
se s
en
d ix F
:P
p ro
er
tie s of G
s se
560 (Continued)
TABLE F.16 (Continued)
62 Thermodynamic Properties of Dry Saturated Steam—Temperature Table
Specific Volume
Enthalpy
Entropy
Abs Sat.
Temp., °Fi
Temp., Press., Liquid
706.1 Source: Abridged from Keenan, J.H. and Frederick, G., Keyes, Thermodynamic Properties of Steam, John Wiley & Sons, New York, 1937.
A p p en
d ix F :P
ro p er
tie s of G
a se s
TABLE F.17
p p Thermodynamic Properties of Superheated Steam
en d
ix F
Abs. Press., psi (Sat. Temp.)
Temp. °F
v 30.53 34.68 38.78 42.56 46.94 51.00 55.07 59.13 63.19 67.25 75.37 83.48 h —
v — 22.36 25.43 28.46 31.47 34.47 37.46 40.45 43.44 46.42 49.41 55.37 61.34 h —
1857.2 s
20.20 21.70 23.20 24.69 27.68 30.86 h —
1857.0 s
20.44 h —
1856.7 s
15.325 h —
1856.5 s
12.268 h —
1866.2 s
(Continued)
TABLE F.17 (Continued)
4 Thermodynamic Properties of Superheated Steam
Abs. Press., psi
Temp. °F
(Sat. Temp.) 200
120 (341.25) v —
10.213 h —
1856.0 s
8.752 h —
1855.7 s
7.656 h —
1855.5 s
6.804 h —
1855.2 s
6.123 h —
1855.0 s
5.565 h —
pp
240 (397.37) v —
en
d ix F
:P
260 (404.42) v —
4.707 h —
ro p
er
tie s of G
280 (411.08) v —
1854.0 s
300 (417.33) v —
se s
en
350 (431.72) v —
d ix F
:P
ro p
er
tie s of G
450 (456.28) v 1.1231
s se
h 1238.4
s 1.5095
v 0.9927
2.197 2.442 h 1231.3
1737.9 1851.3 s
v 0.8852
1.9957 2.219 h 1223.7
1737.1 1850.6 s
v 0.7947
1.8279 2.033 h 1215.7
1736.3 1850.0 s
1.5641 1.7405 h —
1734.8 1848.8 s
1.3662 1.5214 h —
1733.2 1847.5 s
1.2124 1.3509 h —
1731.6 1846.2 s
1.8009 1.8595 (Continued)
TABLE F.17 (Continued)
66 Thermodynamic Properties of Superheated Steam
Abs. Press., psi
Temp. °F
(Sat. Temp.) 500
1000 (544.61) v —
1.0893 1.2146 h —
1730.0 1845.0 s
0.9885 1.1031 h —
1728.4 1843.8 s
0.9046 1.0101 h —
1726.9 1842.5 s
0.7727 0.8640 k
1723.7 1840.0 s
0.6728 0.7545 h —
1720.5 1837.5 s
0.5968 0.6093 h —
pp
2000 (635.82) v —
en
d ix F
:P
2500 (668.13) v —
0.4244 0.4784 h —
p ro
er
tie s of G
3000 (495.36) v —
1698.0 1819.9 s
a se s
1.5699 1.6309 Source: Abridged from Keenan, J.H. and Keyes, F.G., Thermodynamic Properties of Steam, John Wiley & Sons, New York, 1937.
TABLE F.18
68 Enthalpy of Compressed Water
p (t Sat.)
T vu
Sat.
pp
en
d ix F
:P
604 o
ro p
er tie s of G
a se s a se s
p (t Sat.) 1500 (596.39)
tvu
d ix F
Sat. 0.023461 604.97
:P
ro
er tie
s of G
se s
470 Appendix F: Properties of Gases
TABLE F.19
Correlation for Superheated Steam Properties
C 1 = 80,870/T 2 C 2 = (–2641.62/T) × 10 C1 C 3 = 1.89 + C 2
C 4 =C 3 (P 2 /T 2 ) C 5 = 2 + (372,420/T 2 ) C 6 =C 3 C 2 C 7 = 1.89 + C 6 C 8 = 0.21878T − 126,970/T
C 9 = 2C 6 C 7 − (C 3 /T)(126,970) C 10 = 82.546 − 162,460/T C 11 = 2C 10 C 7 − (C 3 /T)(162,460)
v = {[(C 8 C 4 C 3 +C 10 )(C 4 /P) + 1]C 3 + 4.55504 (T/P)}0.016018
H = 775.596 + 0.63296T + 0.000162467T 2 + 47.3635 log T + 0.043557{C 7 P + 0.5C 4 [C 11 +C 3 (C 10 +C 9 C 4 )]} S = 1/T{[(C 8 C 3 − 2C 9 )C 3 C 4 /2 − C 11 ]C 4 /2 + (C 3 −C 7 )P} × (−0.0241983) − 0.355579 − 11.4276/T + 0.00018052T – 0.253801 log P + 0.809691 log T
where
P is the pressure, atm. T is the temperature, K.
v is the specific volume, ft 3 /lb. H is the enthalpy, Btu/lb. S is the entropy, Btu/lb°F.
en d ix F :P ro p er
tie
TABLE F.20
s of G Coefficients to Estimate Properties of Dry Saturated Steam with Equation a
Y = Ax + B/x + Cx 1/2 + D ln x + Ex 2 + Fx 3 +G
s se
Property A B C D E F G
Temperature,°F
–2.78794 × 10 –8 86.594 Liquid specific volume, ft 3 /lb
1.86401 × 10 –14 0.01596 Vapor specific volume, ft 3 /lb 1–200 psia
6.3181 × 10 –11 –2.3928 Liquid enthalpy, Btu/lb
–2.62306 × 10 –8 54.55 Vaporization enthalpy, Btu/lb
9.763 × 10 –9 1,045.81 Vapor enthalpy, Btu/lb
–1.569916 × 10 –8 1,100.5 Liquid entropy, Btu/lb °R
–2.7592 × 10 –11 0.11801 Vaporization entropy, Btu/lb °R
7.433711 × 10 –12 1.85565 Vapor entropy, Btu/lb°R
–2.4941 × 10 –11 1.97364 Liquid internal energy, Btu/lb
–2.646533 × 10 –8 54.56 Vapor internal energy, Btu/lb
– 1.057475 × 10 –8 1,040.03 a y = property, x = pressure, psia.
TABLE F.21
Saturation Line, Specific Heat Capacity, and Transport Properties
P, lb ft/
C pf , Btu/
C pg , Btu/
(Pr) g 32 0.0 0.0886
in. 2 lb °F
lb/ft s
ft 2 /s
Btu/ft h °F
(Pr)f
lb °F
lb/ft s
ft 2 /s
Btu/ft h °F
14.0 0.99 p p
15.2 1.02 d ix F
9.32 60.3 17.3 1.08 p ro
9.85 37.3 18.9 1.13 tie s of G
10.6 19.8 22.1 1.19 se s
10.9 16.3 23.4 1.23 p p
11.5 11.4 26.5 1.29 d ix F
12.4 6.94 32.9 1.41 p ro
13.2 5.11 39.2 1.56 tie s of G
15.3 3.37 54.9 2.16 s se
474 Appendix F: Properties of Gases
TABLE F.22
Surface Tension of Water
Temp., °F
lb ft/ft × 10 3 Temp., °F
lb ft/ft × 10 3
TABLE F.23
Specific Heat at a Constant Pressure of Steam and Water (Btu/lbm °F)
Pressure, psia
Temp., °F
1.003 0.999 0.990 0.969 a Horizontal bars indicate phase change.
b Critical point (P = 3206.2 psia; T = 705.4°F).
Appendix F: Properties of Gases 475
TABLE F.24
Viscosity of Steam and Water (lbm/h ft)
Temp.,
Pressure, psia
4.236 4.231 4.222 4.192 a Horizontal bars indicate phase change.
b Critical point (P = 3206.2 psia; T = 705.4°F).
476 Appendix F: Properties of Gases
TABLE F.25
Thermal Conductivity of Steam and Water [(Btu/h ft °F) × 10 3 ]
Temp.
Pressure (psia)
330.3 331.9 335.1 344.1 a Horizontal bars indicate phase change.
b Critical point (P = 3206.2 psia; T = 705.4°F).
Reference
1. J.H. Keenan, F.G. Keyes, Thermodynamic Properties of Steam, John Wiley & Sons, Inc., New York, 1937.