The fundamental solution in Z The fundamental solution in Z

About the influence of oscillations 381 D EFINITION 2. We define the pseudodifferential zone Z pd β, N by Z pd β, N := n t, ξ ∈ [0, ∞ × n \ {0} : e 4 + 3t |ξ| ≤ N ln e 4 + 3t β o , the hyperbolic zone Z hyp β, N by Z hyp β, N := n t, ξ ∈ [0, ∞ × n \ {0} : e 4 + 3t |ξ| ≥ N ln e 4 + 3t β o . The positive constant N will be chosen later. For |ξ | ∈ 0, p ], p = 4 β N e 4 , we define the function t ξ = t |ξ | as the solution of e 4 + 3t ξ |ξ| = N ln e 4 + 3t ξ β . L EMMA 3. The derivatives ∂ k | ξ | t ξ can be estimated in the following way: ∂ k | ξ | t | ξ | ≤ C k |ξ | − k e 4 + 3t ξ λ t ξ for all ξ ∈ n , |ξ | ∈ 0, p ] .

3.3. The fundamental solution in Z

pd β, N Denoting At, |ξ | := λ t |ξ | λ t bt 2 |ξ | + D t λ λ 1 the fundamental solution X t, 0, ξ can be written explicitly in the form X t, 0, |ξ | = I + ∞ X k=1 Z t At 1 , |ξ | · · · Z t k−1 At k , |ξ | dt k · · · dt 1 25 for |ξ | ∈ 0, p ]. For a given positive number T let us distinguish two cases. a t ξ ≤ T : in this case we have Z t kAs, |ξ |k ds ≤ CT for all t ≤ t ξ ; b T ≤ t ξ : in this case we have Z t kAs, |ξ |k ds ≤ CT + C b Z t T λ s|ξ | ds + Z t T λ ′ s λ s ds ≤ CT + C b 3 t |ξ | + ln λ t λ T ≤ CT + C b N ln e 4 + 3t β + ln λ t λ T ≤ CT + C b N ln e 4 + 3T β− 1 ln e 4 + 3t + ln λ t 3 T for all t ≤ t ξ . Consequently, exp Z t kAs, |ξ |k ds ≤ CT λt e 4 + 3t Cb N ln e4+3T 1−β . This gives the next statement: 382 M. Reissig – K. Yagdjian L EMMA 4. To each small positive ε there exists a constant C ε N such that for all t, ξ ∈ Z pd β, N it holds kX t, 0, ξ k ≤ C ε N λt e 4 + 3t ε , kX t, 0, ξ k ≤ C ε N λt |ξ | − ε , respectively. To continue the solution from Z pd β, N to Z hyp β, N for |ξ | ∈ 0, p ] and to study its properties in Z hyp β, N we need the behaviour of ∂ k t ∂ α ξ X t, 0, ξ , too. It is obtained among other things from 25 and 14. T HEOREM 3. To each small positive ε and each k and α there exists a constant C ε, k,α N such that ∂ k t ∂ α ξ X t, 0, ξ ≤ C ε, k,α N λt λ t |ξ | + λ t e 4 + 3t k |ξ | −| α|−ε for all t, ξ ∈ Z pd β, N .

3.4. The fundamental solution in Z

hyp β, N The hyperbolic zone Z hyp β, N can be represented as the union of the two sets t, ξ : |ξ| ∈ 0, p ] : e 4 + 3t |ξ| ≥ Nlne + 3t β and {t, ξ ∈ [0, ∞ × {|ξ| ≥ p }}. We restrict ourselves to the first set and sketch at the end of this section the approach in the second set. In Z hyp β, N we apply a diagonalization procedure to the first order system 19. To carry out this procedure we need the following classes of symbols. D EFINITION 3. For given real numbers m 1 , m 2 , m 3 , β ∈ [0, 1 and for positive N we denote by S β, N {m 1 , m 2 , m 3 } the set of all symbols a = at, ξ ∈ C ∞ Z hyp β, N : |ξ | ∈ 0, p ] satisfying there ∂ k t ∂ α ξ at, ξ ≤ C k,α |ξ | m 1 −| α| λ t m 2 λ t e 4 + 3t ln e 4 + 3t β m 3 + k . These classes of symbols are related to the Definitions 1 and 2. To understand that the diagonalization procedure improves properties of the remainder as usually one takes into con- sideration the following rules of the symbolic calculus: • S β, N {m 1 , m 2 , m 3 } ⊂ S β, N {m 1 + k, m 2 + k, m 3 − k} , k ≥ 0 ; • a ∈ S β, N {m 1 , m 2 , m 3 } , b ∈ S β, N {n 1 , n 2 , n 3 } , then ab ∈ S β, N {m 1 + n 1 , m 2 + n 2 , m 3 + n 3 } ; • a ∈ S β, N {m 1 , m 2 , m 3 } , then ∂ t a ∈ S β, N {m 1 , m 2 , m 3 + 1} ; • a ∈ S β, N {m 1 , m 2 , m 3 } , then ∂ α ξ a ∈ S β, N {m 1 − |α|, m 2 , m 3 } . Let us define the matrices M − 1 t := 1 √ λ t bt 1 1 −bt bt , Mt := 1 2 s λ t bt bt −1 bt 1 . About the influence of oscillations 383 Substituting X = M − 1 Y some calculations transform 20 into the first order system D t Y − D Y + B Y = 0 , 26 where Dt, ξ := τ 1 t, ξ τ 2 t, ξ , Bt, ξ := − D t λ t bt 2λt bt 1 1 , τ 1 t, ξ := −λtbt|ξ | + D t λ t λ t , τ 2 t, ξ := λtbt|ξ | + D t λ t λ t . Without difficulties one can prove D ∈ S β, N {1, 1, 0}, B ∈ S β, N {0, 0, 1}. To prove L p − L q decay estimates for the solution of 12 we need further steps of the diagonalization of 26. This is carried out in the next lemma. L EMMA 5. For a given nonnegative integer M there exist matrix-valued functions N M = N M t, ξ ∈ S β, N {0, 0, 0}, F M = F M t, ξ ∈ S β, N {−1, −1, 2} and R M = R M t, ξ ∈ S β, N {−M, −M, M + 1} such that the following operator-valued identity holds: D t − D + B N M = N M D t − D + F M − R M , where F M is diagonal while N M is invertible and its inverse N − 1 M belongs as N M to S β, N {0, 0, 0}. R EMARK 5. The invertibility of the diagonalizer N M = N M t, ξ mod S β, N {−M, −M, M + 1} is essential. This property follows by a special choice of the positive constant N in Definition 2. We need only a finite number of steps of diagonalization cf. proof of Theorem 2, thus N can be fixed after carrying out these steps. Now let us devote to the system D t − D + F M − R M Z = 0 , Z = Zt, r, ξ , 27 where t ξ ≤ r ≤ t. Let E 2 = E 2 t, r, ξ ; t, r ≥ t ξ , is defined by E 2 t, r, ξ := λ t λ r   exp −i R t r λ sbs ds|ξ | − i R t r F 1,1 M s, ξ ds exp i R t r λ sbs ds|ξ | − i R t r F 2,2 M s, ξ ds   be the solution of the Cauchy problem D t − D + F M Z = 0, Zr, r, ξ = I . Let us denote P M t, r, ξ := E 2 r, t, ξ R M t, ξ E 2 t, r, ξ . By the aid of P M we define the matrix-valued function Q M t, r, ξ := ∞ X k=1 i k Z t r P M t 1 , r, ξ Z t 1 r P M t 2 , r, ξ · · · · · · Z t k−1 r P M t k , r, ξ dt k . . . dt 1 . 28 The function Q M = Q M t, r, ξ solves the Cauchy problem D t Q − P M Q − P M = 0 , Qr, r, ξ = 0 for t, r ≥ t ξ . Using these auxiliary functions it is easy to prove the next result. 384 M. Reissig – K. Yagdjian L EMMA 6. The matrix-valued function Z t, r, ξ = E 2 t, r, ξ I + Q M t, r, ξ solves the Cauchy problem 27 for t, r ≥ t ξ . Now we can go back to 20, 21 and obtain as its solution X t, 0, ξ =M − 1 t N M t, ξ E 2 t, t ξ , ξ I + Q M t, t ξ , ξ · · N − 1 M t ξ , ξ M t ξ X t ξ , 0, ξ . 29 We write exp −i R t t ξ λ sbs ds = exp −i R t λ sbs ds − i R t ξ λ sbs ds in correspon- dence with our goal 22 and include the second factor in the amplitudes. The matrices M and M − 1 are given in an explicit form. The properties of N M and N − 1 M are described by Lemma 5 using Definition 3. To estimate X t ξ , 0, ξ we use Theorem 3. Consequently, it remains to estimate E 2 0, t ξ , ξ and Q M t, t ξ , ξ . L EMMA 7. For every positive small ε and every α the following estimate in Z pd β, N holds: ∂ α ξ exp i Z t t ξ λ sbs ds ≤ C ε,α |ξ | −| α|−ε , where C ε,α = C ε,α β, N . L EMMA 8. For every positive small ε and every α the following estimate in Z hyp β, N holds, |ξ | ∈ 0, p ]: ∂ α ξ exp −i Z t t ξ F k,k M s, ξ ds ≤ C ε,α |ξ | −| α|−ε , k = 1, 2 , where C ε,α = C ε,α β, N . Proof. The statement for |α| = 0 follows from Z t t ξ F k,k M s, ξ ds ≤ Z t t ξ F k,k M s, ξ ds ≤ C k Z t t ξ λ s ln e 4 + 3s 2β |ξ | e 4 + 3s 2 ds , Z t t ξ λ s ln e 4 + 3s 2β e 4 + 3s 2 ds ≤ ln e 4 + 3 t ξ 2β e 4 + 3 t ξ + Z t t ξ 2β ln e 4 + 3s λ s ln e 4 + 3s 2β e 4 + 3s 2 ds , Definition 2 and ln e 4 + 3 t ξ β N = ln e 4 + 3 t ξ 1 N ln e4+3 tξ 1−β . By induction we prove the statement for |α| 0 by using F M ∈ S β, N {−1, −1, 2} and Lemma 3. About the influence of oscillations 385 More problems appear if we derive an estimate for Q M . Here we refer the reader to [8]. L EMMA 9. The matrix-valued function P M = P M t, t ξ , ξ satisfies for every l and α in Z hyp β, N ∩ {|ξ | ∈ 0, p ]} the estimates ∂ l t ∂ α ξ P M t, t ξ , ξ ≤ C M,l,α λ t |ξ | l e 4 + 3t | α| λ t e 4 + 3t · · ln e 4 + 3t β ln e 4 + 3t β e 4 + 3t |ξ| M . L EMMA 10. For every positive small ε and every α, |α| ≤ M − 1, it holds the following estimate in Z hyp β, N , |ξ | ∈ 0, p ]: ∂ α ξ Q M t, t ξ , ξ ≤ C ε,α 1 + 3t ε |ξ | −| α|−ε , where C ε,α = C ε,α β, N . Proof. We use the representation 28 with r = t ξ and form the derivatives ∂ α ξ Q M t, t ξ , ξ . For |α| = 0 the statement from Lemma 9 and similar calculations as in the proof of Lemma 8 imply the estimate for kQ M t, t ξ , ξ k. If we differentiate for |α| = 1 inside of the inte- grals, then the estimate follows immediately. If we differentiate the lower integral bound in R t k−1 t ξ P M t k , t ξ , ξ dt k , then there appears a term of the form P M t ξ , t ξ , ξ ∂ t ξ ∂ξ l Z t t ξ P M t 1 , t ξ , ξ · · · Z t k−2 t ξ P M t k−1 , t ξ , ξ dt k−1 . . . dt 1 . Using Lemma 9 and Lemma 3 gives the desired estimate in this case, too. But we can only get estimates for |α| ≤ M − 1. In this case we can have an integrand of the form λ t e 4 + 3t 2 |ξ | ln e 4 + 3t β M+1 . The term ln e 4 + 3t β M can be estimated by C1 + 3t ε , the other factor is integrable and can be estimated by C. An induction procedure yields the statement for |α| ≤ M − 1 see [8]. Now we have all tools to get an estimate for 29. T HEOREM 4. The fundamental solution X = X t, 0, ξ can be represented in Z hyp β, N ∩ {|ξ | ∈ 0, p ]} as follows: X t, 0, ξ = X + t, 0, ξ exp i Z t λ sbsds|ξ | + X − t, 0, ξ exp −i Z t λ sbsds|ξ | , where the matrix-valued amplitudes X − , X + satisfy for all |α| ≤ M − 1 and all positive small ε the estimates ∂ α ξ X ± t, 0, ξ ≤ C M,ε q λ t λ t ξ |ξ| −| α|−ε . 30 386 M. Reissig – K. Yagdjian R EMARK 6. There are no new difficulties to derive a corresponding estimate to 30 in {t, ξ ∈ [0, ∞ × {|ξ | ≥ p }} which belongs to Z hyp β, N completely. We obtain for all |α| ≤ M − 1 the estimates ∂ α ξ X ± t, 0, ξ ≤ C M p λ t |ξ | −| α| . 31

3.5. Fourier multipliers