Fungsi Menara Pendingin Prinsip Kerja Menara Pendingin

Temperatur udara sebagaimana umumnya diukur dengan menggunakan termometer biasa yang sering dikenal sebagai temperatur bola kering dry bulb temperature, sedangkan temperatur bola basah wet bulb temperature adalah temperatur yang bolanya diberi kasa basah, sehingga jika air menguap dari kasa dan bacaan suhu pada termometer menjadi lebih rendah daripada temperatur bola kering. Pada kelembaban tinggi, penguapan akan berlangsung lamban dan temperatur bola basah T wb identik dengan temperatur bola kering T db . Namun pada kelembaban rendah sebagian air akan menguap, jadi temperatur bola basah akan semakin jauh perbedaannya dengan temperatur bola kering. Adapun sistem mesin pendingin yang paling banyak digunakan adalah sistem kompresi uap. Secara garis besar komponen sistem pendingin siklus kompresi uap terdiri dari: 1. Kompresor, berfungsi untuk mengkompresi refrijeran dari fasa uap tekanan rendah evaporator hingga ke tekanan tinggi kondensor. 2. Kondensor, berfungsi untuk mengkondensasi uap refrijeran kalor lanjut yang keluar dari kompresor. 3. Katup ekspansi, berfungsi untuk mencekik throttling refrijeran bertekanan tinggi yang keluar dari konsensor dimana setelah melewati katup ekspansi ini tekanan refrijeran turun sehingga fasa refrijeran setelah keluar dari katup ekspansi ini adalah berupa fasa cair + uap. 4. Evaporator, berfungsi untuk menguapkan refrijeran dari fasa cair + uap menjadi fasa uap

2.2. Fungsi Menara Pendingin

Semua mesin pendingin yang bekerja akan melepaskan kalor melalui kondensor, refrijeran akan melepas kalornya kepada air pendingin sehingga air menjadi panas. Selanjutnya air panas ini akan dipompakan ke menara pendingin. Menara pendingin secara garis besar berfungsi untuk menyerap kalor dari air tersebut dan menyediakan sejumlah air yang relatif sejuk dingin untuk dipergunakan kembali di suatu instalasi pendingin atau dengan kata lain menara Universitas Sumatera Utara pendingin berfungsi untuk menurunkan suhu aliran air dengan cara mengekstraksi panas dari air dan mengemisikannya ke atmosfer. Menara pendingin mampu menurunkan suhu air lebih rendah dibandingkan dengan peralatan-peralatan yang hanya menggunakan udara untuk membuang panas, seperti radiator dalam mobil, dan oleh karena itu biayanya lebih efektif dan efisien energinya.

2.3. Prinsip Kerja Menara Pendingin

Prinsip kerja menara pendingin berdasarkan pada pelepasan kalor dan perpindahan kalor. Dalam menara pendingin, perpindahan kalor berlangsung dari air ke udara. Menara pendingin menggunakan penguapan dimana sebagian air diuapkan ke aliran udara yang bergerak dan kemudian dibuang ke atmosfir. Sehingga air yang tersisa didinginkan secara signifikan. Gambar 2.2. Skema menara pendingin Prinsip kerja menara pendingin dapat dilihat pada gambar di atas. Air dari bakbasin dipompa menuju heater untuk dipanaskan dan dialirkan ke menara pendingin. Air panas yang keluar tersebut secara langsung melakukan kontak dengan udara sekitar yang bergerak secara paksa karena pengaruh fan atau blower yang terpasang pada bagian atas menara pendingin, lalu mengalir jatuh ke bahan pengisi. Universitas Sumatera Utara Sistem ini sangat efektif dalam proses pendinginan air karena suhu kondensasinya sangat rendah mendekati suhu wet-bulb udara. Air yang sudah mengalami penurunan suhu ditampung ke dalam bakbasin. Pada menara pendingin juga dipasang katup make up water untuk menambah kapasitas air pendingin jika terjadi kehilangan air ketika proses evaporative cooling tersebut sedang berlangsung.

2.4. Konstruksi Menara Pendingin

Dokumen yang terkait

ANALISIS BEBAN KALOR COOLING TOWER INDUCED DRAFT COUNTERFLOW DENGAN BAHAN PENGISI BAMBU WULUNG

1 38 20

ANALISIS BEBAN KALOR COOLING TOWER INDUCED DRAFT COUNTERFLOW DENGAN BAHAN PENGISI BAMBU WULUNG

0 10 5

MODIFIKASI COOLING TOWER TIPE INDUCED DRAFT ALIRAN COUNTERFLOW ( MODIFICATION INDUCED DRAFT COOLING TOWER TYPE FLOW COUNTERFLOW ) - Diponegoro University | Institutional Repository (UNDIP-IR) BAB I Pendahuluan

0 0 6

MODIFIKASI COOLING TOWER TIPE INDUCED DRAFT ALIRAN COUNTERFLOW ( MODIFICATION INDUCED DRAFT COOLING TOWER TYPE FLOW COUNTERFLOW ) - Diponegoro University | Institutional Repository (UNDIP-IR) BAB V Penutup

0 0 2

MODIFIKASI COOLING TOWER TIPE INDUCED DRAFT ALIRAN COUNTERFLOW ( MODIFICATION INDUCED DRAFT COOLING TOWER TYPE FLOW COUNTERFLOW ) - Diponegoro University | Institutional Repository (UNDIP-IR) BAB I Pendahuluan

0 0 6

MODIFIKASI COOLING TOWER TIPE INDUCED DRAFT ALIRAN COUNTERFLOW ( MODIFICATION INDUCED DRAFT COOLING TOWER TYPE FLOW COUNTERFLOW ) - Diponegoro University | Institutional Repository (UNDIP-IR) BAB V Penutup

0 0 2

MODIFIKASI COOLING TOWER TIPE INDUCED DRAFT ALIRAN COUNTERFLOW ( MODIFICATION INDUCED DRAFT COOLING TOWER TYPE FLOW COUNTERFLOW ) - Diponegoro University | Institutional Repository (UNDIP-IR) Cover, Dft Isi, dll

0 1 19

MODIFIKASI COOLING TOWER TIPE INDUCED DRAFT ALIRAN COUNTERFLOW ( MODIFICATION INDUCED DRAFT COOLING TOWER TYPE FLOW COUNTERFLOW ) - Diponegoro University | Institutional Repository (UNDIP-IR)

1 4 6

MODIFIKASI COOLING TOWER TIPE INDUCED DRAFT ALIRAN COUNTERFLOW ( MODIFICATION INDUCED DRAFT COOLING TOWER TYPE FLOW COUNTERFLOW ) - Diponegoro University | Institutional Repository (UNDIP-IR)

1 1 21

MODIFIKASI COOLING TOWER TIPE INDUCED DRAFT ALIRAN COUNTERFLOW ( MODIFICATION INDUCED DRAFT COOLING TOWER TYPE FLOW COUNTERFLOW ) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 2