Estimate of I Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

2.3 Estimate of I

2 We start as in Section 2.2, and use the symmetry of the mollifying kernel to rewrite I 2 : I 2 = Z Z Q τ R A ij,η x, t, u, ∇u ∂ ∂x j {u i,η f |u η |ζ p k } dx dt. We then take the limit for k → ∞, and by the smoothness of the mollified functions we obtain lim k→∞ I 2 = Z Z Q τ R A ij,η x, t, u, ∇u ∂ ∂x j {u i,η f |u η |ζ p } dx dt. 9 As done while deriving the estimate for I 1 , we would like to consider the limit for η ↓ 0 as well. To do so, we notice that the structure condition H2 implies the inequality Z Z Q τ R |A ij x, t, u, ∇u| p p−1 dx dt ≤ γ Z Z Q τ R h |∇u| p + |u| δ + φ p p−1 1 i dx dt. From which, we have that A ij x, t, u, ∇u ∈ L p p−1 Q τ R , since δ m and since by the classical embedding theorems for parabolic spaces we know u ∈ L ∞,loc 0, T ; L 2,loc Ω ∩ L p,loc 0, T ; W 1 p,loc Ω ֒→ L m,loc Ω T . 10 Therefore, we obtain A ij,η x, t, u, ∇u η↓0 −→ A ij x, t, u, ∇u in L p p−1 Q τ R . On the other hand, ∂ ∂x j {u i,η f |u η |ζ p } = ∂u i,η ∂x j f |u η |ζ p + u i,η f ′ |u η | ∂ |u η | ∂x j ζ p + pu i,η f |u η |ζ p−1 ∂ζ ∂x j ; hence from u i,η → u i and ∇u i,η → ∇u i almost everywhere [3, Appendix C, Theorem 6] we conclude that ∂ ∂x j {u i,η f |u η |ζ p } → ∂ ∂x j {u i f |u|ζ p } a.e. If next we use our estimates for f and f ′ , we have the upper bound ∂ ∂x j {u i,η f |u η |ζ p } p ≤ |∇u i,η | + 2κ 1 ǫ |∇u η | + |u η | 1 κ |u η | |∇u η | + C|u η | p ≤ C {|∇u η | p + |u η | p } , which, applying a slight generalization of Lebesgue’s Dominated Convergence Theo- rem [4, §1.8], gives ∂ ∂x j {u i,η f |u η |ζ p } η↓0 −→ ∂ ∂x j {u i f |u|ζ p } in L p Q τ R . EJQTDE, 2004 No. 14, p. 7 We then have that equation 9 yields lim η↓0 lim k→∞ I 2 = Z Z Q τ R A ij x, t, u, ∇u ∂u i ∂x j f |u|ζ p dx dt + Z Z Q τ R A ij x, t, u, ∇uu i f ′ |u| ∂ |u| ∂x j ζ p dx dt + Z Z Q τ R A ij x, t, u, ∇uu i f |u|p ζ p−1 ∂ζ ∂x j dx dt. 11 The first integral above can be estimated with the help of H1 as follows: Z Z Q τ R A ij x, t, u, ∇u ∂u i ∂x j f |u|ζ p dx dt ≥ C Z Z Q τ R |∇u| p f |u|ζ p dx dt − C 3 Z Z Q τ R |u| δ f |u|ζ p dx dt − Z Z Q τ R φ x, tf |u|ζ p dx dt. 12 To handle the second integral, we use the parabolicity assumption H5, and the equal- ity ∂ |u| ∂x j = ∂u k ∂x j u k |u| , true for u 6= 0: Z Z Q τ R A ij x, t, u, ∇uu i f ′ |u| ∂ |u| ∂x j ζ p dx dt = Z Z Q τ R A ij x, t, u, ∇uu i u k ∂u k ∂x j f ′ |u| |u| ζ p dx dt ≥ 0. 13 For the last integral, we need H2 to derive Z Z Q τ R A ij x, t, u, ∇uu i f |u|p ζ p−1 ∂ζ ∂x j dx dt ≥ −p C 1 Z Z Q τ R |∇u| p−1 |u|f |u|ζ p−1 |∇ζ| dx dt − p Z Z Q τ R C 4 |u| δ 1− 1 p +1 f |u| ζ p−1 |∇ζ| + φ 1 x, t|u|f |u|ζ p−1 |∇ζ| dx dt. 14 Finally, we combine 11, 12, 13, and 14 so to obtain the inequality: lim η↓0 lim k→∞ I 2 ≥ C Z Z Q τ R |∇u| p f |u|ζ p dx dt − C 3 Z Z Q τ R |u| δ f |u|ζ p dx dt − Z Z Q τ R φ x, tf |u|ζ p dx dt − pC 1 Z Z Q τ R |∇u| p−1 |u|f |u|ζ p−1 |∇ζ| dx dt − p C 4 Z Z Q τ R |u| δ 1− 1 p +1 f |u|ζ p−1 |∇ζ| dx dt − p Z Z Q τ R φ 1 x, t|u|f |u|ζ p−1 |∇ζ| dx dt. 15 EJQTDE, 2004 No. 14, p. 8

2.4 Estimate of I