Teorema D'Alembert untuk menguji kekonvergenan deret berganti tanda.

Iorb D'atrlkn !d!k

(

D6.rd lirr4r

hqcrji

br

Mlirtui

pld drq

,6bi. id

I

...d;o6 u&44 x=tri).sdqjuhyl

dir i*!eE dha@ Fsditusibdd (r^)dd hdqsis"j


jlnd

krd\!es,u4i 8tris (

*eei." i".

r.

t*.

r" J d !u

uruk +rhr

b

F6ej b

i


$atu

e.!

BdsfueNieruFLnegiupeF

doeo x

=(ri) $r{juq! njdrq

&r'rk saFnsdilErhDd4G.)ieb

s,(r,) ps

rldsD

3"r,+e'a, r.=s,1,,..:',
&rojbriiuds


s =

ci ) di$6d tui$jqmrd c6nLk

L

{ row4q jik bied
sdiF

ncmNryi

riii

&o

diqo j*s ed$i

jqmhh

jqnrdl


@arryr

rd*

dJdFitrkftsdtreucidd:1
eFdi:l+z-1,+ld+1,5.186''efu}etrFqEftd@6[4El
&$nd6&rrioft@ du drc*nx hbsr6 lhrdshkorcr
shud r&ry idrrry6ur1

*&

dikji

bhillBitu d4 kdhs
mldc@hcg&toEnr

d6 ud ruisbji 4@ Ebd dd bs&ri
rid4 tuei ru@tu hEf! Jqo
e tud


bGunla tu

jB Edide ij dibalhi

komr'dLRoIdDAlo'ln@i&ddd&@{ib&.

u$idcl*idfr$ncch.chi{g
d

ui lji osb

(

uji

h6i{qcie

&d$o


&4e nag4tui I n

lnhrEsyr hbfi Lijur.

jlnlh

tu1.L6