Chau high k metal gate conf foils 110603

Gate Dielectric Scaling for
High-Performance CMOS:
from SiO2 to High-K
Robert Chau
Intel Fellow
Technology and Manufacturing Group
Intel Corporation
Nov 06 2003

Robert Chau

Intel Corporation

1

Content
• Introduction
• SiO2 Scaling
• Review on High-K Problems
• Significant Breakthroughs in High-K/Metal-Gate
• High-K/Metal-gate NMOS & PMOS Transistors

with Record-Setting Drive Performance
• Summary

Robert Chau

Intel Corporation

2

Introduction
• 1.2nm physical SiO2 in
production in our 90nm
logic technology node

100

Physical SiO2 Thickness
Thickness (Å)

• 0.8nm physical SiO2 in our

research transistors with
15nm physical Lg
• Gate leakage is increasing
with reducing physical
SiO2 thickness
90 nm

130 nm

180 nm

250 nm

350nm

10

• SiO2 running out of atoms
for further scaling
• Will eventually need high-K


Robert Chau

Intel Corporation

3

SiO2 Scaling
Gate
PolySi
1.2nm
1.2nm SiO
SiO2

PolySi
2

SiO2
Silicon


Silicon substrate

• 1.2nm physical SiO2 in production (90nm logic node)
• 0.8nm physical SiO2 in research transistors
Robert Chau

Intel Corporation

4

1E+3

2.0

1E+2

1.5

1E+1


NMOS

NMOS

PMOS

PMOS

1E+0

Jg (A/cm²)

Capacitance
Capacitance (µF/cm²)
(µF/cm²)

Electrical Characteristics of
0.8nm Physical SiO2

1.0


0.5

0.8nm

1E-1

NMOS
Inversion
NMOS

1E-2
1E-3
1E-4

PMOS
Inversion

1E-5


0.0
-1

-0.5

0
Vg

Vg (V)

0.5

1

1E-6
-1

-0.5

0


0.5

1

Vg (Volts)

Inversion Capacitance

Robert Chau

Intel Corporation

5

Research Transistor with 15nm
Physical Lg and 0.8nm Physical SiO2
Vd = 0.8V

0.8nm physical SiO2

Vd = 0.05V

1.E-05

S.S. = 95mV/decade
DIBL = 100mV/V
Ioff = 180nA/um

1.E-06
1.E-07

Vg = 0.8V

15nm NMOS
µ A/ µ m)

1.E-04

15nm NMOS


500

Drain Current (

Drain Current (A/µm)

1.E-03

0.8nm physical SiO2

400

0.7V

300
0.6V

200

0.5V


100

0.4V
0.3V

1.E-08
0

0

0.2

0.4

0.6

0.8

0

0.2

Gate Voltage (V)

0.4

0.6

0.8

Drain Voltage (V)

• Well-controlled short-channel characteristics
Robert Chau

Intel Corporation

6

Formation of High-K: Atomic Layer Deposition
MCl4 + 2H2O(g) -> M02 + 4HCl(g)

MCl4(g)

Step 1

Step 3
M02

Step 2

M = Zr, Hf

Step 4

• Sequential introduction of precursor molecules
MCl4(g), H2O(g)
Robert Chau

Intel Corporation

7

Review on High-K Problems
(High-K/PolySi-Gate)
• High-K and polySi gate are incompatible due
to Fermi level pinning at the high-K and
polySi interface which causes high threshold
voltages in transistors
• High-K/polySi transistors exhibit severely
degraded channel mobility due to the
coupling of SO phonon modes in high-K to
the inversion channel charge carriers
Robert Chau

Intel Corporation

8

High-K and PolySi are Incompatible
Poly Si
Interface

Si Si Si Si Si Si Si Si Si Si

Si Si

Si Si Si Si Si Si Si Si Si Si

Si Si

Si Si Si Si Si Si Si Si Si Si

Si Si

Si

Si

O

O

M

M

M

M

O

O

O
M

O
M

O
M

O

O
M

O

Si
M
O

O

O

O

O

O

O

M

M

M

M

O

O

O
M

O
M

O

Si Si

O

M

M

M

Si

O
O

M

M

M

Si Si

Si

O

M

O

Si

O
O

High-K

Si

M
O

M
O

O

O
M

O
M

O

M = Zr, Hf
O

M
O

O

• Defect formation at the polySi-high-K interface
Robert Chau

Intel Corporation

9

Experimental Evidence of
Phonon Scattering in High-K
4.5E-05

Coulombic Phonon

High-K/PolySi
3.5E-05



1

µ Coul
∂T

3.0E-05

Phonon scattering

0

µCoul ↑ T ↑

SiO2/PolySi



1

µ SR
∂T

1.5E-05
1.0E-05
0.1

µSR~
const

1

µ PH
∂T

2.0E-05

Surface
Roughness

µph ↓ T ↑

µ

d(1/ueff)/dT

4.0E-05

=0

E-Field
0.3

0.5

0.7

0.9

1.1

1.3

1.5

E-Field (MV/cm)
Robert Chau

Intel Corporation

1

µ eff

=

1

µ Coul

+

1

µ ph

+

1

µ SR
10

Review on High-K Problems
(High-K/Metal-Gate)
• Metal gate electrodes may be able to screen
the high-K SO phonons from coupling to the
inversion channel charge carriers and reduce
the mobility degradation problem
• However the use of high-K/metal-gate
requires metal gate electrodes with the
“correct” work functions on high-K for both
PMOS and NMOS transistors for high
performance
Robert Chau

Intel Corporation

11

Significant Breakthroughs in
High-K/Metal-Gate made by Intel
• N-type metal and P-type metal with the
correct work functions on high-K have been
engineered and demonstrated for highperformance CMOS
• High-K/metal-gate stack achieves NMOS and
PMOS channel mobility close to SiO2’s
• High-K/metal-gate stack shows significantly
lower gate leakage than SiO2
Robert Chau

Intel Corporation

12

P+ PolySi/SiO2

SDK

P-type Metal on High-K

Mid-gap Metal on High-K

NDK

N-type Metal on High-K

Metal J

Metal I

Metal H

Metal G

Metal F

Metal E

Metal D

Metal C

Metal B

Metal A

N-metal

P-metal

N+ PolySi/SiO2
P+poly

0.1
0.0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
-1.0
-1.1

N+poly

Transistor Flatband Voltage (V)

We have Engineered N-type and P-type Metal
Electrodes on High-K with the “Correct” Work
Functions for NMOS and PMOS on Bulk Si

Gate Electrode Materials
Robert Chau

Intel Corporation

13

NMOS Mobility (cm 2/V.s)

High-K/Metal-Gate Stack Achieves
NMOS Channel Mobility Close to SiO2
Nitridation

SiO2/polyS
i

Optimizatio
n

SiO2/PolySi

High-K/Metal-Gate
TiN fill + improved
contact
W fill + improved contact
W fill + poor
contacts

Eeff
= 1.0MV/cm
20Å High-K/polySi

10 12 14 16 18 20 22 24 26

Inversion Electrical Thickness, Toxe (A)
Robert Chau

Intel Corporation

14

PMOS Mobility (cm2 /V.s)

High-K/Metal-Gate Stack Achieves
PMOS Channel Mobility Close to SiO2
SiO2/PolySi
High-K/Metal-Gate

Eeff = 1.0MV/cm
10

15

20

25

30

Inversion Electrical Thickness, Toxe (Å)
Robert Chau

Intel Corporation

15

High-K Reduces Gate Leakage
1.E+02

SiO2/polySi

Jox [A/cm 2 ]

1.E+01
1.E+00
1.E-01
1.E-02

High-K/metal-gate

1.E-03
1.E-04
0

5

10

15

20

25

Accumulation Electrical Tox [A]
Robert Chau

Intel Corporation

16

High-K/Metal-gate NMOS and PMOS
Transistors with Record-Setting
Drive Current (Idsat) Performance
• NMOS and PMOS high-K/metal-gate transistors
were made on bulk Si
– Physical gate length (Lg) = 80nm
– Electrical Oxide Thickness @ inversion (Toxe) = 1.45nm

• Very high NMOS Idsat
– Idsat = 1.66mA/um, Ioff = 37nA/um at Vcc = 1.3V

• Very high PMOS Idsat
– Idsat = 0.69mA/um, Ioff = 25nA/um at Vcc = 1.3V
Robert Chau

Intel Corporation

17

High-K/Metal-Gate NMOS Ion- Ioff
1.8

Ion (mA/µm)

1.6
1.4
Physical Gate Length
(Lg) ~80nm

1.2
1

• Electrical Tox at inversion
(Toxe) = 1.45nm

• Vcc = 1.3V

0.8
1.0E-10 1.0E-09 1.0E-08 1.0E-07 1.0E-06

Ioff (A/µm)
Robert Chau

Intel Corporation

18

High-K/Metal-Gate NMOS with Record-Setting
Drive Current Performance
1.E-03

Vd=1.3V

1.E-04

Vd= 0.05V

1.E-05
1.E-06
1.E-07
1.E-08
1.E-09

Ion = 1.66mA/um
Ioff = 37nA/um

Id (A/µm)

Id (A/µm)

1.E-02

Lg = 80nm
Toxe = 14.5A

1.E-10
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Vg (V)

0.0018
0.0016
0.0014
0.0012
0.001
0.0008
0.0006
0.0004
0.0002
0

Lg = 80nm
Toxe = 14.5A

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Vd (V)

• Electrical Tox at Inversion (Toxe) = 1.45nm
• Transistor physical gate length (Lg) = 80nm
Robert Chau

Intel Corporation

19

High-K/Metal-Gate PMOS with Record-Setting
Drive Current Performance
1E-03

1E-05
1E-06
1E-07

Vd=1.3V

-6.E-04

Vd=0.05V

Ion = 693 µA/µm
Ioff = 25 nA/µm

Id (A /µm )

Id (A/µm)

1E-04

-7.E-04

-5.E-04

Toxe = 14.5A

-4.E-04
-3.E-04

1E-08

Lg = 80nm

-2.E-04

1E-09

Toxe = 14.5A

-1.E-04

1E-10

Lg = 80nm

0.E+00

-0.1 -0.3 -0.5 -0.7 -0.9 -1.1 -1.3
Vg (V)

-0.1 -0.3 -0.5 -0.7 -0.9 -1.1 -1.3
Vds (V)

• Electrical Tox at Inversion (Toxe) = 1.45nm
• Transistor physical gate length (Lg) = 80nm
Robert Chau

Intel Corporation

20

Summary
• We have implemented 1.2nm physical SiO2 in our
90nm logic technology node and products, and
have demonstrated 0.8nm physical SiO2
• We have engineered and demonstrated NMOS and
PMOS high-K/metal-gate stacks on bulk Si with i)
the correct work functions, ii) channel mobility
close to SiO2’s and iii) very low gate leakage
• We have fabricated high-K/metal-gate NMOS and
PMOS transistors on bulk Si with record-setting
drive current performance
• We believe high-K/metal-gate is an option for the
45nm logic technology node, to be in production
in 2007
Robert Chau

Intel Corporation

21