ATM Service Categories ATM Traffic Management: Traffic Enforcement and Traffic

Figure 8-18 Effect of traffic shapping. Figure 8-19 Traffic parameters and traffic shaping. Figure 8-20 Shaping for the three services. The traffic shaping function modifies the ATM traffic flow to achieve improved network efficiency, for interworking to ATM switches with small buffers and for virtual paths VPs originating at the ATM switch. Traffic shaping can be done either at the ingress or egress side of an ATM switch. Traffic shaping at the ingress side is used to modify the traffic flow of terminal equipment and ATM switches that are not able to keep the traffic contract, for instance, sending ATM cells with a higher peak bit rate than allowed. Traffic shaping adapts the traffic characteristics of the ATM cell stream to the Traffic shaping at the egress side of the ATM node is provided to protect subsequent ATM switches with small buffers from data bursts leading to buffer overflow. In addition, egress shaping is required to ensure that VPs originating at the ATM switch conform to the traffic contract. Previous Table of Contents Next Copyr ight © CRC Pr ess LLC by Abhijit S. Pandya; Ercan Sen CRC Press, CRC Press LLC ISBN: 0849331390 Pub Date: 110198 Previous Table of Contents Next A CBR source shapes traffic using PCR. Thus, it schedules a cell every 1PCR unit of time. A VBR source shapes bursts MBS at the PCR rate, while ensuring that the overall SCR is maintained. An ABR source requires dynamic shaping. In order to comply to the flow control mechanism used to support the ABR service, the ABR source traffic shaper varies according to the feedback messages it receives from the network and the application’s requirements. Note, the source does not have to be the connection endpoint. To shorten feedback loops in networks with large delays the use of virtual sources and virtual destinations can be set up within the ATM switches. These behave exactly like ABR sources and destinations. Figure 8-21 illustrates the various applications and the service types.

VII. Flow Control and Congestion Control

Congestion control allows the management of traffic when many users contend for finite network resources. Congestion management is one of the most important functions that an ATM switch will have to perform, especially for ABR and UBR traffic. The ATM CBR and VBR service categories have been designed to avoid network congestion conditions when implemented with robust connection admission controls and usage parameter controls. ABR and UBR service categories have been defined to take advantage of the excess capacity beyond that required for CBR and VBR connections. In the current Internet, the network components are assumed not to do any congestion control. As such, the endpoints rely on end-to-end protocols, such as TCPIP, to regulate the flow of traffic, based upon packet loss. This model can also apply for TCPIP over an ATM transport infrastructure. One of the effective methods of congestion control in high speed ATM networks is to control the user traffic at the user-network interface [Chao 1992, Cooper 1990, Gerla 1990, Hiramatsu 1991, Jain 1990, Katevenis 1987, Khosrow 1991]. This type of control at the user-network interface is also called rate- based access control [Chao 1992]. Currently, the most widely known rate-based access control system is the leaky-bucket scheme in which a user is periodically allocated a certain number of tokens based on the bandwidth allocated for the user The rate-base access control schemes have been extensively studied by the scientific community [Chao 1992, Gerla 1990, Khosrow 1991]. Additionally, Chao [Chao 1992] studied a rate control system based on the shared buffer scheme to regulate outgoing traffic at each intermediate ATM node to prevent congestion. The ability to function gracefully in an overload situation will be the key benchmark requirement for all ATM switches and will be the critical function most analyzed in the comparison of ATM switches from multiple vendors. An ATM switch architecture must therefore provide robust congestion management support, multiple service classes and per VC accounting with the capability of operating on a cell time basis. Specifically, a congestion management implementation should include per VC accounting for maximum cells, congested cells, current cells, dropped cells and received cells all processed on a per port, per cell time basis. And finally, an ATM switch which provides support for ABR will have to incorporate additional accounting features which of course must be handled on a cell time basis requiring processing bandwidth and memory. Figure 8-21 The various applications and the service types. Table 8-7 lists various ATM switch vendors who provide a comprehensive set of congestion control mechanisms to optimize bandwidth utilization while maintaining a high level of service degree during periods of overload. Table 8-7 Company Switch Newbridge 36170 Ascend CBX 500 Nortel Concorde Flow Control Features EFCI Marking Explicit rate VSVD ABR; EFCI relative rate, Explicit rate VS VD RM cell priority EFCI marking Per-VC queuing Traffic Policing Yes, Dual Leaky Bucket GCRA Yes Yes CAC Yes Yes Yes Previous Table of Contents Next Copyr ight © CRC Pr ess LLC