BAB II TINJAUAN PUSTAKA - Perbandingan Kinerja Anti Stripping Agent WETFIX BE dengan DERBO-401 UN 2735 pada AC – WC yang Menggunakan Aggregat dari Patumbak (Penelitian)

BAB II TINJAUAN PUSTAKA II.1. Aspal, Aggregat, AC-WC, serta Standart Perencanaan Aspal atau bitumen merupakan material yang berwarna hitam kecoklatan yang

  o

  Sumber : Departemen Pekerjaan Umum Direktorat Jenderal Bina Marga 2006

  C, cm cm Min. 50

  o

  9 Daktalitas, 25

  8 Penetrasi residu, 25ºC, 100 gr, 5 detik 0.1mm Min. 54

  7 Berat Jenis mm Min. 1.0

  6 Penurunan berat % Max. 0.8

  5 Kelarutan dalam Trichloroethylene % Min. 99

  C cm Min. 100

  bersifat viskoelastis sehingga akan melunak dan mencair bila mendapat cukup pemanasan dan sebaliknya. Sifat viskoelastis inilah yang membuat aspal dapat menyelimuti dan menahan agregat tetap pada tempatnya selama proses produksi dan masa pelayanannya.

  Terdapat bermacam-macam tingkat penetrasi aspal yang dapat digunakan dalam campuran antara lain 40/50, 60/70, 80/100. Umumnya aspal yang digunakan di Indonesia adalah penetrasi 80/100 dan penetrasi 60/70.

  C Min. 200

  o

  3 Titik nyala

  C 48 - 58

  o

  C

  o

  2 Titik Lembek, 25

  1 Penetrasi, 25ºC, 100 gr, 5 detik 0.1 mm 60 - 79

  

Tabel II.1.1. Pengujian dan Persyaratan Aspal Penetrasi 60/70

NO SIFAT FISIK SATUAN PERATURAN

  4 Daktalitas, 25 Agregat mempunyai peranan yang sangat penting dalam prasarana transportasi, khususnya dalam hal ini pada perkerasan jalan.

  Daya dukung perkerasan jalan ditentukan sebagian besar oleh karakteristik agregat yang digunakan. Pemilihan agregat yang tepat dan memenuhi persyaratan akan sangat menentukan dalam keberhasilan pembangunan atau pemeliharaan jalan.

  Dalam Manual Pekerjaan Campuran Beraspal Panas disebutkan bahwa ukuran agregat dalam suatu campuran beraspal terdistribusi dari yang berukuran besar sampai ke yang kecil. Semakin besar ukuran maksimum agregat yang dipakai semakin banyak variasi ukurannya dalam campuran tersebut.

  Ukuran agregat dalam suatu campuran beraspal terdistribusi dari yang berukuran besar sampai ke yang kecil. Semakin besar ukuran maksimum agregat yang dipakai semakin banyak variasi ukurannya dalam campuran tersebut.

  Seluruh spesifikasi perkerasan mensyaratkan bahwa partikel agregat harus berada dalam rentang ukuran tertentu dan untuk masing-masing ukuran partikel harus dalam proporsi tertentu. Distribusi dari variasi ukuran butir agregat ini disebut gradasi agregat.

  Gradasi agregat mempengaruhi besarnya rongga dalam campuran dan menentukan workabilitas (sifat mudah dikerjakan) dan stabilitas campuran. Untuk menentukan apakah gradasi agregat memenuhi spesifikasi atau tidak, diperlukan suatu pemahaman bagaimana ukuran partikel dan gradasi agregat diukur.

  Gradasi agregat ditentukan oleh analisa saringan, dimana contoh agregat harus melalui satu set saringan. Ukuran saringan menyatakan ukuran bukaan jaringan kawatnya dan nomor saringan menyatakan banyaknya bukaan jaringan kawat per inchi persegi dari saringan tersebut. Dalam memilih gradasi agregat campuran, maka untuk campuran jenis Laston perlu Kelekatan agregat terhadap aspal adalah kecenderungan agregat untuk menerima, menyerap dan menahan film aspal. Agregat hidrophobik (tidak menyukai air) adalah agregat yang memiliki sifat kelekatan terhadap aspal yang tinggi, contoh dari agregat ini adalah batu gamping dan dolomit. Sebaliknya, agregat hidrophilik (suka air) adalah agregat yang memiliki kelekatan terhadap aspal yang rendah. Sehingga agregat jenis ini cenderung terpisah dari film aspal bila terkena air. Kuarsit dan beberapa jenis granit adalah contoh agregat hidrophilik.

  Ada beberapa metoda uji untuk menentukan kelekatan agregat terhadap aspal dan kecenderungannya untuk mengelupas (stripping). Salah satu diantaranya dengan merendam agregat yang telah terselimuti aspal ke dalam air, lalu diamati secara visual.

  Lapis permukaan (surface course) merupakan lapisan teratas dari struktur perkerasan jalan yang langsung berhubungan dengan roda kendaraan dan kondisi lingkungan.

  Berdasarkan bahan pengikat aspalnya, lapis permukaan dibedakan menjadi dua lapisan yaitu lapisan permukaan yang berfungsi sebagai lapis aus (wearing course) dan lapisan permukaan yang berfungsi sebagai lapis antara (binder course). Lapis aus (wearing course) berfungsi sebagai lapis aus yang langsung menahan gesekan kendaraan saat mengerem atau start kendaraan.

  Menurut Direktorat Jenderal Bina Marga Departemen Pekerjaan Umum, Laston (AC) terdiri dari tiga macam campuran, Laston Lapis Aus (AC-WC), Laston Lapis Pengikat (AC-BC) dan Laston Lapis Pondasi (AC-Base) dan ukuran maksimum agregat masing- masing campuran adalah 19 mm, 25.4 mm, dan 37.5 mm.

  

Tabel II.1.2. Ketentuan Sifat-sifat Campuran Laston

  Sifat-sifat Campuran WC BC Base

  Penyerapan aspal (%) Maks

  1.2 Jumlah tumbukan per bidang 75 112 Min

  3.5 Rongga dalam campuran (%) Maks

  5.5 Rongga dalam agregat (VMA) (%) Min

  15

  14

  13 Rongga terisi aspal (%) Min

  65

  63

  60 Min 800 1500 Stabilitas Marshall (Kg)

  Maks _ _ Min

  3

  5 Kelelehan (mm) Maks _ _

  Marshall Quotient (Kg/mm) Min 250 300 Stabilitas Marshall Sisa (%)

  Min

  75 setelah perendaman selama 24 jam, 60ºC Rongga dalam Campuran (%)

  Min

  2.5 pada kepadatan membal (refusal) Sumber : Departemen Pekerjaan Umum Direktorat Jenderal Bina Marga 2006

  Tabel II.1.3. Ketentuan Sifat-sifat Campuran Laston Dimodifikasi (AC Modified) Laston Sifat-sifat Campuran WC BC Base Jumlah tumbukan per bidang 75 112 Min

  3.5 Rongga dalam campuran (%) Maks

  5.5 Rongga dalam agregat (VMA) (%) Min

  15

  14

  13 Rongga terisi aspal (%) Min

  65

  63

  60 Min 1000 1800 Stabilitas Marshall (Kg)

  Maks _ _ Min

  3

  5 Kelelehan (mm) Maks _ _

  Marshall Quotient (Kg/mm) Min 300 350 Stabilitas Marshall Sisa (%)

  Min

  75 setelah perendaman selama 24 jam, 60ºC Rongga dalam Campuran (%)

  Min

  2.5 pada kepadatan membal (refusal) Stabilitas Dinamis (lintasan/mm) Min 2500

  Sumber : Departemen Pekerjaan Umum Direktorat Jenderal Bina Marga 2006

II. 2. Bahan Tambah

  Dalam campuran beraspal untuk memperbaiki perilaku suatu campuran beraspal serta meningkatkan kualitas aspal sehingga dapat menghasilkan perkerasan yang baik adalah dengan menggunakan bahan modifikasi. Bahan modifikasi yang dimaksud adalah bahan tambah baik berupa polimer, selulosa, lain-lain (filler), maupun mikrokarbon atau zat aditif. meningkatkan daya lekat dan ikatan serta mengurangi efek negatif dari air dan kelembaban sehingga menghasilkan permukaan yang memiliki daya lekat yang tinggi.

  Dengan penggunaan Anti Stripping Agent ini diharapkan dapat memperpanjang waktu pelapisan ulang hotmix, memungkinkan seleksi jenis aggregat yang lebih luas dan meminimalkan kerusakan jalan oleh air dengan biaya perawatan yang lebih rendah.

II.2.1. Anti Stripping Agent WETFIX – BE

  Anti Stripping Agent WETFIX BE ini digunakan untuk campuran hotmix. Jenis Anti Stripping Agent ini memiliki beberapa kegunaan yang antara lain : a.

  Memperpanjang waktu pelapisan ulang Hot Mix b.

  Biaya perawatan yang lebih rendah c. Memungkinkan seleksi jenis aggregat yang lebih luas d.

  Meminimalkan kerusakan oleh air Bahan ini bekerja dengan merubah sifat aspal dan aggregat, meningkatkan daya lekat dan ikatan serta mengurangi efek negatif dari air dan kelembaban sehingga menghasilkan permukaan yang berdaya lekat tinggi

  Dosis pemakaian WETFIX BE hanya berkisar 0.2 % - 0.5 % dari berat aspal. Untuk metode pemakaiannya adalah:

  1. Masukkan WETFIX BE ke dalam mobil tanki pengiriman atau langsung ke tanki penyimpanan aspal pada waktu pengisian aspal (sirkulasi ± 1 jam).

  2. Dengan menggunakan Dosing Pump disambungkan ke pipa aspal setelah pompa atau dimasukkan ke timbangan aspal (in-line metering injection system).

  Anti Stripping jenis ini berfungsi untuk membantu mengurangi kerusakan perkerasan yang diakibatkan oleh hujan dan kelembaban. Anti Stripping ini telah diuji oleh IIP- Dehradun, SIIR-Delhi, dan CRRI-New Delhi yang menghasilkan produk – produk terbaik.

  Untuk campuran Hotmix, penggunaan Anti Stripping Agent jenis DERBO 401 ini berkisar 0.1% - 0.4% dari berat bitumen. Sementara untuk perbaikan jalan, penggunaannya berkisar 0.2 % - 0.5% dari berat bitumen.

II.3. Perencanaan Campuran Beraspal Panas

  Menurut Manual Pekerjaan Campuran Beraspal Panas Departemen Permukiman dan

  

Prasarana Wilayah, campuran beraspal panas adalah suatu campuran perkerasan lentur yang

  terdiri dari agregat kasar, agregat halus, filler dan bahan pengisi aspal dengan perbandingan tertentu,dan untuk mengeringkan agregat dan mencairkan aspal agar dapat dengan mudah dicampur dengan baik maka pencampuran bahan tersebut harus dipanaskan.

  Sukirman, S,(1999) dalam bukunya yang berjudul Perkerasan Lentur Jalan Raya

  menyatakan bahwa perencanaan campuran mencakup kegiatan pemilihan dan penentuan proporsi material untuk mencapai sifat-sifat akhir dari campuran aspal yang diinginkan.

  Tujuan dari perencanaan campuran aspal adalah untuk mendapatkan campuran efektif dari gradasi agregat dan aspal yang akan menghasilkan campuran aspal yang memiliki sifat-sifat campuran sebagai berikut : a.

  Stabilitas adalah kemampuan campuran aspal untuk menahan deformasi permanen yang disebabkan oleh lalu lintas, baik beban yang bersifat statis maupun dinamis sehingga campuran akan tidak mudah aus, bergelombang, melendut, bergeser dan lain-lain.

  b.

  Fleksibilitas adalah kemampuan campuran aspal untuk menahan terhadap defleksi akibat

  1) Beban yang berlangsung lama yang berakibat terjadinya kelelahan pada lapis pondasi atau pada tanah dasar yang disebabkan oleh pembebanan sebelumnya.

  2) Lendutan berulang yang disebabkan oleh waktu pembebanan lalu lintas yang berlangsung singkat.

3) Adanya perubahan volume campuran.

  c.

  Durabilitas adalah kemampuan campuran aspal untuk mempertahankan kualitasnya dari disintegrasi atas unsur-unsur pembentuknya yang diakibatkan oleh beban lalu lintas dan pengaruh cuaca. Campuran aspal harus mampu bertahan terhadap perubahan yang disebabkan oleh : 1)

  Proses penuaan pada aspal dimana aspal akan menjadi lebih keras. Hal ini disebabkan oleh pengaruh oksidasi dari udara dan proses penguapan yang berakibat akan menurunkan daya lekat dan kekenyalan aspal. 2)

  Pengaruh air yang menyebabkan kerusakan atau kehilangan sifat lekat antara aspal dan material lainnya.

  d.

  Impermeability adalah campuran aspal harus bersifat kedap air untuk melindungi lapisan perkerasan di bawahnya dari kerusakan yang disebabkan oleh air yang akan mengakibatkan campuran menjadi kehilangan kekuatan dan kemampuan untuk menahan beban lalu lintas.

  e.

  Pemadatan adalah proses pemampatan yang memberikan volume terkecil, menggelincir rongga sehingga batas yang disyaratkan dan menambah kepadatan optimal. Mengingat efek yang timbul oleh pengaruh udara,air serta pembebanan oleh arus lalu lintas apabila rongga dalam campuran tidak memenuhi syarat yang ditentukan. hal ini harus dihindari supaya tidak terjadi penyimpangan. Pada pelaksanaan pemadatan dilapangan sangat yang ditetapkan maupun jumlah lintasannya. Pemadatan merupakan suatu upaya untuk memperkecil jumlah VIM, sehingga memperoleh nilai struktural yang diharapkan.

  f.

  Temperatur pemadatan merupakan faktor penting yang mempengaruhi pemadatan, kepadatan hanya bisa terjadi pada saat aspal dalam keadaan cukup cair sehingga aspal tersebut dapat berfungsi sebagai pelumas. Jika aspal sudah dalam keadaan cukup dingin maka kepadatan akan sulit dicapai. Temperatur campuran beraspal panas merupakan satu-satunya faktor yang paling penting dalam pemadatan, disebabkan temperatur pada saat pemadatan sangat mempengaruhi viskositas aspal yang digunakan dalam campuran beraspal panas. Apabila temperatur pada saat pemadatan rendah, mengakibatkan viskositas aspal menjadi tinggi dan membuat sulit dipadatkan. Menaikkan temperatur pemadatan atau menurunkan viskositas aspal berakibat partikel agregat dalam campuran beraspal panas dapat dipadatkan lebih baik lagi, adapun density pada saat pemadatan campuran beraspal panas terjadi pada suhu lebih tinggi dari 2750 F (1350 C). Density menurun dengan cepat ketika pemadatan dilakukan pada suhu lebih rendah.

  g.

  Workability adalah campuran agregat aspal harus mudah dikerjakan saat pencampuran, penghamparan dan pemadatan, untuk mencapai satuan berat jenis yang diinginkan tanpa mengalami suatu kesulitan sampai mencapai tingkat pemadatan yang diinginkan dengan peralatan yang memungkinkan.

II.4. Metode Pengujian Campuran

  Pada penelitian tugas akhir ini, penulis menggunakan metode Marshall. Setelah gradasi agregat ditentukan, selanjutnya adalah pembuatan contoh benda uji dan pengujian di laboratorium.

  Pengujian Marshall merupakan pengujian yang paling banyak dan paling umum dipakai pada saat ini. Hal ini disebabkan karena alatnya sederhana dan cukup praktis untuk dimobilisasi.

  Pengujian Marshall bertujuan untuk mengukur daya tahan (stabilitas) campuran agregat dan aspal terhadap kelelehan plastis (flow) dan retained stability. Flow didefenisikan sebagai perubahan deformasi atau regangan suatu campuran mulai dari tanpa beban, sampai beban maksimum dan dinyatakan dalam milimeter atau 0.01”.

II.4.1. Parameter pengujian Marshall

  Beton aspal dibentuk dari agregat, aspal dan atau tanpa bahan tambahan yang dicampur secara merata pada suhu tertentu. Campuran kemudian dihamparkan dan dipadatkan, sehingga terbentuk beton aspal padat.

  Sifat-sifat campuran beton aspal dapat dilihat dari parameter-parameter pengujian marshall antara lain : a.

  Stabilitas Marshall Nilai stabilitas diperoleh berdasarkan nilai masing-masing yang ditunjukkan oleh jarum dial. Stabilitas merupakan parameter yang menunujukkan batas maksimum beban yang dapat diterima oleh suatu campuran beraspal saat terjadi keruntuhan yang dinyatakan dalam kilogram. Nilai stabilitas yang terlalu tinggi akan menghasilkan perkerasan yang terlalu kaku sehingga tingkat keawetannya berkurang.

  b.

  Kelelehan (flow)

  Seperti halnya cara memperoleh nilai stabilitas, nilai flow merupakan nilai dari masing- masing yang ditunjukkan oleh jarum dial. Hanya saja jarum dial flow biasanya dalam satuan mm (millimeter).

  c.

  Hasil Bagi Marshall (Marshall Quotient) Hasil Bagi Marshall merupakan hasil bagi stabilitas dengan kelelehan. Semakin tinggi nilai MQ, maka kemungkinan akan semakin tinggi kekakuan suatu campuran dan semakin rentan campuran tersebut terhadap keretakan.

  Marshall Quotient = d.

  Rongga Terisi Aspal (VFA atau VFB) Rongga terisi aspal (VFA) adalah persen rongga yang terdapat diantara partikel agregat (VMA) yang terisi oleh aspal, tidak termasuk aspal yang diserap oleh agregat. Rumus adalah sebagai berikut :

  − = 100

  Dimana :

  VFA : Rongga udara yang terisi aspal, prosentase dari VMA, (%)

  VMA : Rongga udara pada mineral agregat, prosentase dari volume total, (%)

  VIM : Rongga udara pada campuran setelah pemadatan (%) Rongga antar agregat (VMA) adalah ruang rongga diantara partikel agregat pada suatu perkerasan, termasuk rongga udara dan volume aspal efektif (tidak termasuk volume aspal yang diserap agregat). Jika komposisi campuran ditentukan sebagai persen berat dari campuran total, maka VMA dihitung dengan persamaan sebagai berikut :

  ∗

  VMA = 100 -

  ( )

  Dengan pengertian :

  VMA = Rongga dalam agregat mineral (persen volume curah) Gsb = Berat jenis curah agregat Ps = Agregat, persen berat total campuran Gmb = Berat jenis curah campuran padat

  Atau, jika komposisi campuran ditentukan sebagai persen berat agregat, maka VMA dihitung dengan persamaan sebagai berikut :

  100

  • VMA = 100 x 100

  100 +

  Dengan pengertian : Pb = Aspal, persen berat agregat Gmb = Berat jenis curah campuran padat Gsb = Berat jenis curah agregat f.

  Rongga Udara (VIM)

  Rongga udara dalam campuran (Va) atau VIM dalam campuran perkerasan beraspal terdiri atas ruang udara diantara partikel agregat yang terselimuti aspal. Volume rongga udara dalam campuran dapat ditentukan dengan rumus berikut:

  −

  VIM = 100 x Dengan pengertian : VIM = Rongga udara dalam campuran padat, persen dari total volume.

  Gmm = Berat jenis maksimum campuran. Gmb = Berat jenis curah campuran padat.

  g.

  Retained Stability Kehilangan stabilitas berdasarkan perendaman diukur sebagai ketahanan terhadap akibat pengaruh kerusakan oleh air disebut Indeks Perendaman (Index of Retained Strength) yang dinyatakan dalam persen (%). Parameter ini akan dipakai sebagai indikasi ketahanan campuran terhadap pengaruh air.

II.4.2 Dasar-dasar Perhitungan

  a. Berat Jenis Bulk dan Apparent Total Agregat Agregat total terdiri atas fraksi-fraksi agregat kasar, agregat halus dan bahan pengisi /

  filler yang masing-masing mempunyai berat jenis yang berbeda, baik berat jenis kering

  (bulk spesific gravity) dan berat jenis semu (apparent grafity). Kedua macam berat jenis dari total agregat tersebut dapat dihitung dalam persamaan berikut :

  • - 1
  • 2 3 + + + ⋯ +

       Berat Jenis Kering (bulk specific gravity) dari total agregat

      Dengan pengertian : Gsbtot agregat = Berat jenis kering agregat gabungan, (gr/cc) Gsb1, Gsb2.. Gsbn = Berat jenis kering dari masing-masing agregat, (gr/cc) P1, P2, P3, … = Presentase berat dari masing-masing agregat, (%)

    • - 1

       Berat Jenis Semu (apparent spesific gravity)

    • 2 3 ⋯ +

        = 1 2 3

      • 1 2 3 ⋯ + Dengan pengertian : Gsatot agregat = Berat jenis semu agregat gabungan, (gr/cc) Gsa1, Gsa2..Gsan = Berat jenis semu dari masing-masing agregat, (gr/cc) P1, P2, P3, … = Presentase berat dari masing-masing agregat, (%)

          b. Berat Jenis Efektif Agregat Berat jenis efektif campuran (Gse), kecuali rongga udara dalam partikel agregat yang menyerap aspal dapat dihitung dengan rumus yang biasanya digunakan berdasarkan hasil pengujian kepadatan maksimum eoritis sebagai berikut :

          − =

          − Dengan pengertian : Gse = Berat jenis efektif/ efektive spesific gravity, (gr/cc) Gmm = Berat jenis campuran maksimum teoritis setelah pemadatan (gr/cc) Pmm = Persen berat total campuran (=100) Gb = Berat jenis aspal Berat jenis efektif total agregat dapat ditentukan juga dengan menggunakan persamaan dibawah ini :

        • 2

          =

          Dengan pengertian : Gse = Berat jenis efektif / efektive spesific gravity, (gr/cc) Gsb = Berat jenis kering agregat / bulk spesific gravity, (gr/cc) Gsa = Berat jenis semu agregat / apparent spesific gravity, (gr/cc)

          c. Berat Jenis maksimum Campuran Berat jenis maksimum campuran, Gmm pada masing-masing kadar aspal diperlukan untuk menghitung kadar rongga masing-masing kadar aspal. Berat jenis maksimum dapat ditentukan dengan AASHTO T.209-90 .

          = −

          Dengan pengertian : Gmm = Berat jenis maksimum campuran,(gr/cc)

          Pmm = Persen berat total campuran (=100)

          Gse = Berat jenis efektif/ efektive spesific gravity, (gr/cc) Gb = Berat jenis aspal,(gr/cc)

          d. Berat Jenis Bulk Campuran padat Perhitungan berat jenis bulk campuran setelah pemadatan (Gmb) dinyatakan dalam gram/cc dengan rumus sebagai berikut :

          = Dengan pengertian : Gmb = Berat jenis campuran setelah pemadatan, (gr/cc) Vbulk = Volume campuran setelah pemadatan, (cc) Wa = Berat di udara, (gr)

          e. Penyerapan Aspal Penyerapan aspal dinyatakan dalam persen terhadap berat agregat total, tidak terhadap berat campuran. Perhitungan penyerapan aspal (Pba) adalah sebagai berikut:

          − =

          Dengan pengertian : Pba = Penyerapan aspal, persen total agregat (%) Gsb = Berat jenis bulk agregat, (gr/cc) Gse = Berat jenis efektif agregat, (gr/cc) Gb = Berat jenis aspal, (gr/cc)

          Kadar aspal efektif (Pbe) campuran beraspal adalah kadar aspal total dikurangi jumlah aspal yang terserap oleh partikel agregat. Kadar aspal efektif ini akan menyelimuti permukaan agregat bagian luar yang pada akhirnya akan menentukan kinerja perkerasan beraspal. Rumus Kadar aspal efektif adalah :

          = − 100

          Dengan pengertian : Pbe = Kadar aspal efektif, persen total campuran, (%) Pb = Kadar aspal, persen total campuran, (%) Pba = Penyerapan aspal, persen total agregat, (%) Ps = Kadar agregat, persen terhadap berat total campuran, (%)

        II.5 Campuran Beraspal Panas dengan Pendekatan Kepadatan Mutlak

          Dalam Pedoman Perencanaan Campuran Beraspal Dengan Pendekatan Kepadatan

          

        Mutlak, kepadatan mutlak dimaksudkan sebagai kepadatan tertinggi (maksimum) yang

          dicapai sehingga walaupun dipadatkan terus, campuran tersebut praktis tidak dapat menjadi lebih padat lagi.

          Spesifikasi campuran beraspal panas untuk perkerasan lentur di rancang menggunakan metoda Marshall konvensional. Untuk kondisi lalu lintas berat perencanaan metoda Marshall menetapkan pemadatan benda uji sebanyak 2 x 75 tumbukan dengan batas rongga campuran (VIM) antara 3.5 sampai 5.

          Untuk menambah kesempurnaan dalam prosedur perencanaan gradasi gabungan campuran dilapangan, maka ditentukan pengujian tambahan, yaitu pemadatan ultimit pada benda uji sampai mencapai kepadatan mutlak (refusal density) dimana VIM dirancang dapat