Bahan presentasi Semnas TIH 2 18 mei 2017 Prof Eniya

WUJUDKAN ENERGI BERSIH
BISA?

Prof. Dr.-Eng. Eniya Listiani Dewi
18 May 2017, Semarang

Agency for the Assessment and Application of Technology – Indonesia

BPPT H I STORY
BPPT establishment was first came from the former President, Soeharto’s idea passed to Prof Dr. Ing. B.J. Habibie on
28th January 1974.
With decree number 76/M/1974 on January 5th,1974, Prof Dr. Ing. B.J. Habibie was elected as Goverment advisor in the
field of advanced technology and aviation technology who responsible directly to President by forming Advance
Technology and Aviation Technology (ATTP) Pertamina.
Through Board of commisioners of Pertamina’s decree number 04/KPTS/DR/DU/1975 on April 1st , 1976, ATTP was
renamed into Pertamina Advanced Technology Division. Later, this name was changed into Agency for the Assessment
and Application of Technology (BPPT) through presidental decree Number 25 date August 21st 1978. Renewed with a
Presidential decree number 47 year 1991

1974


Prof. Dr.Ing. B.J.
Habibie

1998

1998 1998 1999 2001 2004 2006 2008

1998 1999 2001 2004 2006 2008 2014
Prof. Dr. Rahardi
Ramelan

Prof. Dr. Zuhal
MSEE

Dr. A.S. Hikam

Ir. M. Hatta
Rajasa

Dr. Kusmayanto

Kadiman

Prof. Ir. Said
Djauharsyah
Jenie, Sc.D

Dr. Ir. Marzan A.
Iskandar

2014

Dr. Ir. Unggul Priyanto,
MSc

Present

ORGAN I Z AT I ONAL ST RU CT U RE

3


Jumlah Penduduk
Jumlah Pulau
Luas Daratan
Luas Perairan

: 237.641.326 Jiwa (2010)
: 17.000 buah
: 1.922.570 Km2
: 3.257.483 Km2

Globa lizat ion – A “sm a lle r w orld”

INDONESIA
AS A MULTICULTURAL
NATION STATE

STATE
MODERN
NATION
More than

50 ethno-nations

nation
More than
700 ethnic
groups
And all major
religions

ADAT

ETHNIC

ADAT

RACE

ADAT

nation


nation

ADAT

RELIGION

ADAT

ADAT

CLASS

ADAT

ADAT

70.611
villages
with

distinct
customary
laws

NRE 23%
2025

Fuel Cell

Biodiesel
Solar panel
Wind turbine
Resource: Outlook Energi Indonesia 2015/BPPT

Nuclear

Jakarta

Limitations of energy resources led to the inability of domestic energy
production (fossil and renewable energy) to meet domestic consumption

in 2033 and Indonesia would become a Nett Energy Importer .
6,000

Import
NRE Production
Fossil Production
Export

5,000

3,000
2,000
1,000

Supply and
Energy Demand

Ensure

Energy

Sustainability

Achieve

2035

2034

2033

2032

2031

2030

2029

2028


2027

2026

2025

2024

2023

2022

2021

2020

2019

2018


2017

2016

2015

2014

2013

0
2012

Million BOE

4,000

Nett Energy Importer in
2033


Energy
Sovereignty

Goals
Agency for the Assessment and Application of Technology – Indonesia

Critical Situation of Indonesia Energy
Supply :
It is hard to rely on the limited fossil fuel in the
next decades at this current yellow light
situation of fossil energy supply
Nett Crude Oil Importer Since Early 2000s

Nett Gas Importer in 2023

200

3000

100

2500

-600

1500

Gas Import (BAU)

1000
500

Crude Export

-1000

Crude Import

-1500

Net Import Crude
(BAU)

-2000
-2500

2034

2032

2030

2028

2026

2024

2022

2020

2018

-500

2016

0
2014

2034

2032

2030

2028

2026

Gas Export (HIGH)

2012

-300

-500

2000

BSCF

-200

-400

2024

2022

2020

2018

2016

2014

-100

2012

Million Barrels

0

Gas Import (HIGH)

Energi Oultook BPPT 2016

Pada 2030 hanya 12.5% NRE dihasilkan, target 23% tercapai? No.

Kebutuhan 30-40% masih dari fosil

Demand tinggi pada industry
dan transportasi

Hazardouos

Fuel Oil

Decreasing of
Stock

Negative effect to Envinronment

Global warming

Renewable energy
alternative (H2)

Great Concern on Green Technology Development
through the Utilization of Renewable Energy Source
No
1
2
3
4
5
6
7

Non Renewable
Crude Oil
Gas
Coal
Peat
CBM

 Fuel
 Fuel
 Fuel
 Fuel
 Fuel

Renewable
Solar
Wind
Geothermal
Hydro
Wave Power
Ocean Thermal

 Electricity
 Electricity
 Electricity
 Electricity
 Electricity
 Electricity

Biomass

 Electricity
 Fuel

Strategic
Option

Too many things to do from the highest potential of palm :
 World Largest CPO Production (30 million tones per annum)
 World Largest Liquid Waste (Palm Oil Mill Effluent, POME)
 World Largest Palm Solid Waste

Palm based energy sources is promising prospect for
our fuel supply in the near future

Palm Based Fuels

Agency for the Assessment and Application of Technology – Indonesia

Potential Distribution of Waste Biomass in Indonesia
(tons)

MALUKU&PAPUA

SULAWESI

KALIMANTAN

NUSA TENGGARA

JAWA

Ministry of Agriculture, Indonesia

SUMATERA

-

10.000.000 20.000.000 30.000.000 40.000.000 50.000.000 60.000.000 70.000.000 80.000.000
SUMATERA

JAWA

NUSA TENGGARA

KALIMANTAN

SULAWESI

MALUKU&PAPUA

TKS

20.940.304

68.560

-

4.863.893

691.118

133.589

Cangkang dan Serat

17.298.512

56.637

-

4.017.999

570.923

110.356

Sekam padi

3.020.300

7.179.163

663.535

889.032

1.400.417

55.398

Jerami

15.101.498

35.895.817

3.317.675

4.445.160

7.002.086

276.992

Tongkol jagung

1.995.309

4.533.697

489.809

138.503

1.353.743

21.916

Batang jagung

8.729.477

19.834.926

2.142.914

605.951

5.922.627

95.883

443.934

826.845

-

-

31.939

-

Bagasse

Agency for the Assessment and Application of Technology – Indonesia

Palm Oil Waste

Agency for the Assessment and Application of Technology – Indonesia

Biohydrogen Sources
35,000,000
30,000,000
25,000,000
20,000,000
Ton

Cassava
15,000,000

Palm Oil
Sugar Cane

10,000,000
5,000,000
-

Agency for the Assessment and Application of Technology – Indonesia

Area Vs Production of Palm Oil
and Cassava

35,000,000
30,000,000
25,000,000

Palm Oil Production
(ton)
Palm Oil Area (Ha)

20,000,000
15,000,000

Cassava Production
(Ton)
Casava Area (Ha)

10,000,000
5,000,000

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

-

Year

Agency for the Assessment and Application of Technology – Indonesia

INDONESIA is the Biggest Crude Palm Oil (CPO)
Producer In the World
30 Million Ton CPO in 2014
NAD
319,2
Ha

SUMUT
1.057,8
Ha

RIAU
1.801,2
Ha
SUMBAR
347,8 Ha
JAMBI
494,1
Ha
BENGKUL
U
226,8 Ha
SUMSEL
737,2
Ha
LAMPUN
G
154,8 Ha

KALTENG
1.085,2
Ha
KALBAR
545,8Ha
KEPR
I
2,7H
a

BABEL
143,9
Ha

BANTE
N
15,4
Ha

JABAR
123 Ha

Name of
Province
Palm Area
(Thousand)

KALSEL
324,1
Ha

KALTIM
495,0
Ha

PAPUA
26,4
Ha

SULTEN
G
66,6 Ha
SULTR
A
23,3
Ha

SULBAR
108,1
Ha

SULSEL
17,5
Ha

IRJABA
R
31,5
Ha

Elaeis
guineensis

Existing = 8.5 Million Ha, Total Potential= 47 Million
Agency for the Assessment
and Application of Technology – Indonesia
Ha

From Biomass to Hydrogen
Resource

Process

Product

Textile
Waste

Amylase
Microbes

Pulp &
paper

Cellulase
Microbes

Ligno
cellulose

Cellulase
Microbes

Baverage
waste

Microbes

FCU-Taiwan

POME

Microbes

Taiwan-BPPT

Glycerol

Microbes

TPSE-BPPT
Molasses

Microbes
22

BIOHYDROGEN
PRODUCTION
RESEARCH ACTIVITY
-Glycerol -

Agency for the Assessment and Application of Technology – Indonesia

Bio-Hydrogen Development

Agency for the Assessment and Application of Technology – Indonesia

Laboratory Experiment for Producing Bio-Hydrogen
uV(x10,000)
5.0 Chromatogram
4.5

H2/2.728

Capacity: 4 Liters
4.0
3.5
3.0
2.5
2.0

4

0.5

CO/4.900

/3.444

1.0

3.5
3

2.5

5.0

7.5

10.0

min

V (volt)

0.0
-0.5

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0

2.5
2
1.5
1
i-v

0.5
0
0

0.05

0.1

p(watt)

1.5

0.15

I(A)

720 L/ day H2

Fuel Cell Test Using Bio-H2

Agency for the Assessment and Application of Technology – Indonesia

Laboratory Experiment for Producing Bio-Hydrogen
4.00

0.4

3.50

0.35

3.00

0.3

2.50

0.25

2.00

0.2

Capacity:15 Liters
I-V11:30

1.50

P (Watt)

V (volt)

I-V14:45
I-V20:00
I-V23:00
I-P23:00

0.15

I-P20:00
1.00

I-P14:45

0.1

I-P 11:30
0.50

0.05

0.00

0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

I (Ampere)

0.8

3.50

0.7

3.00

0.6

2.50

0.5

100

I-V lab
I-V11:30

2.00

0.4

1.50

0.3

P (Watt)

V (volt)

I-V14:45
I-V20:00
I-V23:00
I-P23:00
I-P20:00
1.00

0.2

0.50

0.1

0.00

0

I-P14:45
I-P 11:30
I-P lab

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Flow (cc/minute

4.00

80
60
40
20
0
0

5

10

15

20

25

Hours

I (Ampere)

Agency for the Assessment and Application of Technology – Indonesia

Laboratory Experiment for Producing Bio-Hydrogen
Capacity:40 Liters
Produksi Gas
Flowrate gas (cc/menit)

600
500
400
300
200
100
0
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

uV(x10,000)
5.0 Chromatogram
4.5

H2/2.728

Waktu Fermentasi (jam)

4.0
3.5
3.0
2.5
2.0
1.5

0.5

CO/4.900

/3.444

1.0

0.0
-0.5

2.5

5.0

7.5

10.0

min

Agency for the Assessment and Application of Technology – Indonesia

Paten

Bio-H2 production system and its
application for fuel cell, patent No.
P00201000740, 2012

BIOHYDROGEN
PRODUCTION
RESEARCH ACTIVITY
-POME -

Agency for the Assessment and Application of Technology – Indonesia

PT Adolina PTPN IV Medan, Indonesia

Production capacity: 30 ton/hour
Waste: 600 Liter per ton FFB (18 L/hour)
Location: PTPN IV. Medan, Indonesia

Agency for the Assessment and Application of Technology – Indonesia

PKS Kertajaya and Cikasungka PTPN
VIII, Indonesia

Production capacity: 30
ton/hour
Waste: 600 Liter per ton
FFB (36 L/hour)
Location: PTPN VIII.
Banten, Indonesia

Agency for the Assessment and Application of Technology – Indonesia

Biohydrogen Production
from POME
Lab experiment:
1. seed sludge innoculation
2. Screening microorganism
3. Pretreatment seed sludge

Hydrogen Storage

H2 Production
CH4 Production

Outlet POME
waste

: H2 Producer

: H2

: CH4 Producer

: CH4

: Other microbes

: CO2

32

PROJECT 2015
Household
stationary

 Process Design
 Laboratory Test
 Reactor and Control System Design

Telecomunication

Gas Engine

Process Design for biohydrogen production will use
high speed production rate
with simultaneous enzymatic
& fermentation with POME as
its raw material

Agency for the Assessment and Application of Technology – Indonesia

Laboratory Test
POME was taken from PKS Kertajaya PTPN VIII Banten, Indonesia
COD 20,000 – 30,000 mg/L
(Chong et al. (2009) reported POME COD is 75,000 – 96,300 mg/L)

Batch
100 mL

Media

Condition

Biogas (ml)

POME + glucose +
activator

Sterile

273.59

non sterile

317.00

Glucose

327.42

Non-glucose

320.47

Activator

320.47

Non activator

311.79

POME

Batch
2L

Batch
40 L

POME

There wasn’t significantly different biogas production from different
condition  POME without any addition nutrient and activator for
next volume scale up

Agency for the Assessment and Application of Technology – Indonesia

From 2 L POME (pH 5.6 T 37oC)
without nutrient addition and
unsterile condition, was produced
0.1 L H2/L. media/ hour.

Batch
2L

Biogas Production (L)

Batch
100 mL

18
16
14
12
10
8
6
4
2
0
0

Batch
40 L

10

20

30

40

50

Time (h)

Biogas Production inside Fermenter 3 L Volume

Agency for the Assessment and Application of Technology – Indonesia

Experiment Scheme

(1) bioreactor, (2) Temperature Sensor , (3) Heater, (4) Controler, (5) Pump, (6) Hot plate, (7)
Substrate tank, (8) nutrient tank, (9) gas-liquid separator, (10) gas meter

ONE M3 MOBILE BIOH2 PRODUCTION
SYSTEM BY POME IS CONSTRUCTING
 Industry-academic Joint Project between FCU and BPPT, Indonesia.

Agency for the Assessment and Application of Technology – Indonesia
37

Control System Design for Bio-Hydrogen Fermentor

Control System Design for
Bio-hydrogen Fermenter
 Temperature control
 pH control
 And software control and its reactor
acquisition
Agency for the Assessment and Application of Technology – Indonesia

HYDROGEN
APPLICATION IN
INDONESIA

Agency for the Assessment and Application of Technology – Indonesia

Running fuel cell

Market possibility in Indonesia
>700 points BTS installed FC

Base station GSM need 3 kW
Base station CDMA need 5 kW
Remote area have >3000 station
Mostly use DC inverter, thus need to change DC on site

User: Telecommunication industries
43

PEMFC Hidrogen as BTS backup
power di Medan

Note:
1. Hydrogen consumption was 6 tank of
Hydrogen for 18 h
2. 3 tanks for operation 3 for backup
3. Fuel Cell 2.5 kW, standby 52.9 V, 0 A,
tank pressure 2036 psi dan 1186 psi,
stack 80 cell
4. Medan has 50 site BTS fuel cells
5. Hydrogen gas was supplied by
Samator dan Aneka Gas.
44

300 kW Fuel Cell in Ancol
Investasi KOYCA 3
juta USD
Investasi PEMDA
Investasi Jakarta
Properti

45

Backup server at Technology
Information Center BPPT
Area Puspiptek Serpong

PEM Fuel Cell installed as backupserver for Data Center of BPPT @Serpong

February 2015
Collaboration with PT. Cascadiant Indonesia

March 2015
Kuliah I

47

Governor of Jogyakarta Visit

Online Monitoring System
http://www.cascadiant.bussinesrails.com

Direct Methanol Fuel Cell Education Kit

PT. Global Tunam Energi (startup company)

INAFHE.ORG

Since 2014

 Senior High School Education
 Workshop and training on fuel cell and hydrogen implementation,
Jakarta Convention Center, 11-13 April 2016
 Demonstration Direct Methanol Fuel Cell

Kuliah I

54

Supported by IAHE (International
Association of Hydrogen Energy)

Participants: 24 countries, 370 speakers, publication for
Special Issue of 5 high impact factor journal

MoU Signing between PT. Cascadiant - BPPT
26/05/2017

55

THANK YOU
Bppt.go.id
Inafhe.org

Agency for the Assessment and Application of Technology – Indonesia

Limitations of energy resources led to the inability of domestic energy
production (fossil and renewable energy) to meet domestic consumption in
2033 and Indonesia would become a Nett Energy Importer .
6,000
Import
NRE Production
Fossil Production
Export
Net Domestic Supply

5,000

3,000
2,000
1,000

Supply and
Energy Demand

Ensure

Energy
Sustainability

Achieve
Goals

Energy
Sovereignty

2035

2034

2033

2032

2031

2030

2029

2028

2027

2026

2025

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

0
2012

Million BOE

4,000

Nett Energy Importer in
2033

Potential Distribution of Various Biomass Waste in Indonesia
(tons)
MALUKU&PAPUA

SULAWESI

KALIMANTAN

NUSA TENGGARA

Ministry of Agriculture, Indonesia

JAWA

SUMATERA

-

10.000.000 20.000.000 30.000.000 40.000.000 50.000.000 60.000.000 70.000.000 80.000.000
SUMATERA

JAWA

NUSA TENGGARA

KALIMANTAN

SULAWESI

MALUKU&PAPUA

TKS

20.940.304

68.560

-

4.863.893

691.118

133.589

Cangkang dan Serat

17.298.512

56.637

-

4.017.999

570.923

110.356

Sekam padi

3.020.300

7.179.163

663.535

889.032

1.400.417

55.398

Jeram i

15.101.498

35.895.817

3.317.675

4.445.160

7.002.086

276.992

Tongkol jagung

1.995.309

4.533.697

489.809

138.503

1.353.743

21.916

Batang jagung

8.729.477

19.834.926

2.142.914

605.951

5.922.627

95.883

443.934

826.845

-

-

31.939

-

Bagasse

Agency for the Assessment and Application of Technology – Indonesia

Candidate for Biohydrogen Sources
35,000,000
30,000,000
25,000,000

Ton

20,000,000
15,000,000

Cassava
Palm Oil
Sugar Cane

10,000,000
5,000,000
-

Agency for the Assessment and Application of Technology – Indonesia

Biogas Cycle

Solar energy
Photosynthesis

Biofuel production
Animal husbandry
Crop harvesting

CO2

Industrial processing
Human consumption

Organic
wastes

H2O
Energy
crops

Biofertilizer

Biogas
Anaerobic
digestion

Electrical and/or
thermal energy

Natural gas
pipeline

OUTLINE

The Process of Biodigestion





Liquefaction
Acid Production
Acetate Production
Methane Production

Complex Organic Carbon
Hydrolysis

Monomers & Oligomers
Acidogenesis

Organic Acids
Acetogenesis

Acetate – H2 /

CO2
Methanogenesis

CH4 + CO2

State Of The Art
Inokulum

Substrat

HRT

Konsentrasi
substrat

Optimal Index

Ref

C. butyricum
TISTR 1032

Sugarcane
juice

4

25 g sucrose/L

3.38 mmol H2/L/jam atau 1 mol H2/mol
hexose

Pattra, Lay, Lin, O-Thong &
Reungsang, 2011

municipal
sewage
treatment

Condensed
molasses
fermentatio
n soluble
(CMS)

4

40 g-COD/L

400 mmol H2/L/day atau 16.67 mmol
H2/L/jam atau 1 mol H2/mol hexose

J.-J. Chang et al., 2008

Cl. butyricum
CGS2

Pati

2

25 g Total
sugar/L

1,5 L H2/L/jam
Atau 66,9 mmol/L/jam atau 1,28 mol
H2/mol glukosa

J.-J. Chang et al., 2008

Anaerobic
digester

Cheese
whey

24

40 g COD/L

2,5 l H2/L/hari atau 4,6 mmol H2/L/jam
Atau 5 mmol/g-COD

Azbar, Dokgoz, Keskin,
Korkmaz & Syed, 2009

Anaerobic
granular
sludge

Cheese
whey

6

30 g/L

46,61 mmol H2/L/jam atau 2,8 mol
H2/mol lactose

Davil-Vazquez, Cota-Navaro,
Rosales-Colunga, LeonRodriquez & Razo-Flores,
2009

Anaerobic
sludge POME

POME

96

50 g/L

74 33 ml/jam/Liter

Yussof, Hassan, S.Abd-Aziz,
& Rahman, 2009

sludge POME

POME

48

4850 ml H2/liter

O-Thong, Hniman,
Prasertsan, & Imai, 2011

CSTR for hydrogen production
Inokulum
C. butyricum TISTR
1032
municipal sewage
treatment

Susbtrat
Sugarcane juice

HRT (jam)
4
4

Cl. butyricum CGS2

Condensed molasses
fermentation soluble
(CMS)
Starch

Anaerobic digester

Cheese whey

24

Anaerobic granular
sludge
Sludge POME
Municipal sewage
sludge

Cheese whey

6

POME

96

Glucose

0.5

Anaerobic sludge

Glucose

4

Sucrose

4

Sucrose

8

Municipal sewage
sludge
Municipal sewage
sludge

2

Optimal index
3.38 mmol H2/L/jam atau 1
mol H2/mol hexose
400 mmol H2/L/day atau
16.67 mmol H2/L/jam atau
1 mol H2/mol hexose
1,5 L H2/L/jam
Atau 66,9 mmol/L/jam atau
1,28 mol H2/mol glukosa
2,5 l H2/L/hari atau 4,6
mmol H2/L/jam
Atau 5 mmol/g-COD
46,61 mmol H2/L/jam atau
2,8 mol H2/mol lactose
74 – 33 ml/jam/Liter
Max H2 yield 1.81 mol/mol
glucose
Max H2 prod rate 0.11568
mmol/hari
Max H2 yield 4.7 mol/mol
sucrose
Max H2 yield 4.52 mol/mol
sucrose

Ref
Pattra dkk, 2011
Chang, 2008

Chen, 2008

Azbar, 2009

Vazquez, 2009
Yussof, 2009
Wang, 2009
Wang, 2009
Wang, 2009
Wang, 2009

Clostridium acetobutylicum…
Anaerobically digested sludge
Thermoanaerobacterium…
Thermoanaerobacterium…
Municipal sewage sludge
Mixed culture
Anaerobic mixed microflora
Mixed culture
Anaerobis sludge
Cattle dung compost
municipal wastewater
Mixed culture
Cracked cereals
Anaerobic sludge

Waste activated sludge
0

0.5
1
1.5
2
2.5
Yield (mol H2/mol glukosa)

3

T. thermosaccharolyticum W16
Clostridium sp.HR-1 (from cow…
Clostridium butyricum CGS5
0

0.5
1
1.5
2
Yield (mol H2/mol xilosa)

0

2.5

Anaerobic digester sludge

50 100 150 200 250 300 350
Yield (ml H2/gram pati)

Sludge POME

Thermoanaerobacterium…

Sludge POME

Anaerobic sludge

Anaerobic seed sludge

Clostridium pasteurianum CH4
Clostridium butyricum EB6

Clostridium butyricum CGS5

POME Sludge

Wasted activated sludge
0

1
2
3
4
5
Yield (mol H2/mol sukrosa)

6

Thermoanaerobacterium rich sludge
0

1000 2000 3000 4000 5000 6000 7000
Yield (ml H2/L POME)

Operating condition parameter










Organism
Temperature
pH
Alkalinity
Macro nutrients
Micro nutrients
Toxicity
Reaction time
Substrate transfer










Oxidize ammonia to nitrites
Oxidize nitrites to nitrates.
Remove BOD
Add oxygen
Remove carbon dioxide
Remove excess nitrogen and other inert gasses
Remove turbidity and clarify the water
Remove various organic contaminants

Provide a substrate for various
bacteria to attach and grow

Hydrogen Production at different substrate
concentration
Total
sugar
concentrat
ion (g/L)

HPR
(L/L/d)

HY (mol
H2/mol
sugar)

10

5.59±0.81

0.68±0.14

28.34±1.91

71.62±1.90 95.68±4.19

15

17.18±1.04

1.62±0.09

44.80±0.73

55.20±0.73 91.71±2.49

20

20.37±0.86

1.41±0.05

42.56±1.76

57.56±1.61 91.71±5.36

30

21.10±2.18

1.60±0.08

45.24±1.75

55.94±2.43 64.47±6.70

Gas composition (%)

H2

Substrate
utilization

CO2

SMP at different substrate concentration
Subst
Buty
H2
Effluent (SMP) g/L
rate
rate/ selektifi
conve
aceta
ty
rsion
te /(Acetat
mol
L/L/d H2/mol (%) Ethan Butha
Propio butyr (mol/ e+butyr
mol)
ay
glukose
ol
nol
Acetate nate
ate
ate)

TS
g/L

% H2 HPR

10

28,34

5,59

0,68

95,68

0,25

0,00

0,62

0,16

1,28

1,41

1,08

15

44,8

17,18

1,61

91,71

1,01

0,00

0,92

0,18

3,16

2,37

2,37

20

42,56 20,37

1,41

91,71

1,43

0,00

0,72

0,40

5,04

4,87

1,999

30

45,24

1,61

64,47

1,14

0,00

0,97

0,54

4,94

4,10

1,71

21,1

yield

Biomass concentration
Phase II

Phase III Phase IV Phase I

7

14

6

12

5

10

4

8

3

6

2

4

1

2

0

0
0

10

20

30

Time (day)

40

50

60

HRT (h)

VSS (g/L)

Phase I

VSS bottom (g/L)
VSS middle (g/L)
VSS top (g/L)
HRT (h)

Hydraulic Retention Time effect

60

140
Restart
120
100

HPR

40
80
30
60
20
40
10

20
0

0
0

10

20

30

40

Time (day)

50

60

70

HRT, H2 content

50

HPR (L H2/L/day)
H2 content (%)

HRT (h)

Soluble Metabolite Product at different Hydraulic Retention Time
Effluent (SMP) g/L
Butyrat H2
HRT % H2 HPR yiel Subst
e/acetat Selek
rate
(h)
(l/L/da d
tifity/
e
mol conve
y)
(mol/m (Acet
(H2/ rsion(
ate+b
ol)
mol %) Etha Buth Acetat Propio Buty
utyra
gluc
nol anol
e
nate
rate
te)
ose)

8

46,22

13,74

1,8

98,86

0,17

0,08

0,32

0,39

1,57

2,73

3,01

4

45,93

28,64

1,82 94,54

0,34

0,00

1,51

0,15

5,53

2,64

2,35

1

40,57

83,69

1,42 91,89

1,0

0

0,7

0,3

3,3

3,26

2,33

40,31 124,87 1,17 82,54

0,5

0

0.5

0,5

4,1

5,66

2,04

0,5

VSS at different substrate concentration

30

16
VSS bottom (g/L)
VSS middle (g/L)
VSS top (g/L)
HRT (h)

14
12

VSS (g/L)

20

10

15

8
6

10

4
5

2

0

0
10

20

30

40

Time (day)

50

60

70

HRT (h)

25

Carrier effect
M365

M190

No carrier

4

4

4

Biogas rate (L biogas/L/d)

61.82±1.62

47.88±1.55

35.89±1.65

% H2

44.43±3.16

42.56±1.76

43.04±1.50

HPR (L H2/L/d)

27.27±1.05

20.37±0.86

15.45±1.81

Substrate utilization (%)

97.97±0.68

91.71±5.36

85.44±9.04

Yield (mol H2/mol sugar)

2.03±0.15

1.41±0.05

1.47±0.18

HRT (h)

Soluble metabolit products (SMP)
Carrier

Total

type

SMP
(mg

Total

Butyric/A

%

TVFA (mg Ethanol
COD/L)

Acetic

Propionic

Butyric

acid

acid

acid

cetic

COD/L)
No

738.14

7709.91

8.74

17.12

0.00

74.14

10.82

M365

452.65

7941.26

5.39

22.41

0.57

71.57

7.98

M190

3242

20,721.26

23.22

5.61

9.61

61.57

27.44

carrier

Established the technology of granulation and optimization on
biohydrogen production bacteria

Granular
Sludge

carrier
75

Conclusion







Substrate concentration of 15-20 g sugar/liter give high yield and HPR
Recommended operating condition is HRT 1 hour and substrate concentration 20 g
sugar/L with HPR 88.73 73 L H2/L/day, substrates utilization and yield respectively,
92.95% and 1.42 mol H2/mol glucose , HRT of 0.5 hours gives the highest HPR, it
was 124.87 L H2/L/day, on the other hand, substrate utilization and yield were low,
which were 82.39% and 1.17 mol H2/mol glucose, respectively.
The larger of carrier surface area, the higher of biohydrogen production. M365 is
more suitable for biohydrogen production from sugary waste water. It has higher
extensive surface area specific than the M190 that provides higher contact area
between microorganisms and susbtrate.
There are differences in biomass concentration distribution at the bottom, middle
and top part of the bioreactor at low HRT (HRT 1 hand 0.5 h). At HRTT 0.5 hour,
the concentration of biomass at the bottom, middle and top of which were 26.80;
7.73 and 1.86 g VSS/L, respectively.

Terima Kasih
Dr. Unggul Priyanto
Dr. Chen Yeon Chu
Prof. Chen Yu Lin
Dr. Mahyudin (R.I.P)
Zulaicha Dwi Hastuti
Kurniawan
Lies A. W.
Herri Susanto
Oka Pradipta Arjasa
Siti Julekha
Sandia Primera

Kesimpulan








Proses fermentasi limbah pabrik minuman menjadi biohidrogen yang baik terjadi
pada konsentrasi 15 20 g gula/liter. Pada konsentrasi ini memberikan nilai HPR
dan yield yang tinggi.
Kondisi operasi yang direkomendasikan adalah HRT 1 jam dan konsentrasi substrat
20 g gula/L dengan HPR 88,73 73 L H2/L/hari, penggunaan substrat dan yield
masing-masing, 92,95 % dan 1,42 mol H2/mol glukosa. Pada HRT 0,5 jam
memberikan HPR tertinggi, yakni 124,87 L H2/L/hari, namum konversi substrat dan
yieldnya rendah, yakni masing-masing 82,39% dan 0 mol H2/mol glukosa.
Carrier yang memiliki luas permukaan lebih besar menghasilkan kecepatan
produksi biohidrogen yang lebih tinggi. M365 lebih cocok untuk produksi
biohidrogen dari limbah pabrik minumam karena M365 memiliki luas luas
permukaan specifik lebih tinggi dari M190 sehingga memberikan luas bidang
kontak antara mikroorganisme dengan susbtrat yang baik.
Terdapat perbedaan distribusi konsentrasi biomass pada bagian bawah, tengah
dan atas bioreaktor ketika HRT yang rendah, 1 jam dan 0,5 jam Pada HRTT 0,5 jam,
konsentrasi biomassa pada bagian bawah, tengah dan atas yakni masing-masing
26,80; 7,73 dan 1,86 g VSS/L.