supp_b_1.doc 708KB Jun 05 2011 09:30:50 PM
                                                                                Dr. H. Baumann
Tel: (01) 632 2901
FAX: (01) 632 1280
e-mail: [email protected]
Supplementary Material
Semiempirical Computation of Large Organic Structures and their UV/vis Spectra:
Program Discription and Application to Poly(triacetylene) Hexamer and Taxotere
by Harold Baumann*, Rainer E. Martin and François Diederich
Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule,
Universitätstr. 16, CH-8092 Zürich
(9. 12. 1997)
Procedure sido.c 1
Interactions between the doubly and singly excited configurations and between the
doubly excited and the ground configuration.
 1   = (hl | hl)
 1  llhhl | H|
0
1
 1
 lm
hh | H|  0  =
(1)
2 (hl | hm)
(2)
2 (hm | km)
(3)
 1
1  mm
hk | H|  0  
 1
1  lm
hk | H|  0    (hm | kl) + (hl | km)
(4)
 1
1  lm
hk | H|  0   3 (hm | kl)  (hl | km)
(5)
 1  s  0
1  llhh | H|
r
(6)
 1  l  
1  llhh | H|
r
(7)
2 (hl | hr)
 1  s   2 (hl | ls)
1  llhh | H|
h
 1 l  =
1  llhh | H|
h
(8)
n
2 H hl + 2
  2(ii | hl) 
(ih | il) +
i
(9)
2  (ll | hl)  (hh | hl)
1
 1 s
 lm
kk | H|  r   0
(10)
 1 l
1  lm
kk | H|  r   (km | rk)
(11)
 1 m
1  lm
kk | H|  r   (kl | rk)
(12)
 1 s
1  lm
kk | H|  k  (kl | ms) + (km | ls)
(13)
 1 m
1  lm
kk | H|  k   Flk + (mk | lm )  (kl | kk) + (kl | mm)
(14)
 1 l
1  lm
kk | H|  k   Fmk + (lk | lm )  (km | kk) + (km | ll)
 1 s
1  mm
hk | H|  r   0
(15)
(16)
 1 m
1  mm
hk | H|  r  (km | hr) + (mh | kr)
(17)
1 s
1  mm
hk | H|  k   (mh | ms)
(18)
1 s
1  mm
hk | H|  h   (mk | ms)
(19)
1 m
1  mm
hk | H|  k   Fmh + (mk | hk ) + (mh | kk)  (mh | mm)
(20)
 1 m
1  mm
hk | H|  h   Fmk + (mh | hk) + (mk | hh)  (mk | mm)
(21)
 1 s
1  lm
hk | H|  r   0
(22)
1 m
1
1  lm
hk | H|  r  
2
 (kr | hl) + (hr | kl)
(23)
2
1 l
1
1  lm
hk | H|  r  
2
1 s
1  lm
hk | H|  h  
1
1 s
1  lm
hk | H|  h  
1
 (kr | hm) + (hr | km)
(24)
2
 (mk | ls ) + (lk | ms)
(25)
2
 (mh | ls) + (lh | ms)
(26)
1 m
1
1  lm
hk | H|  k  
2
  Flh  (mh | ml) + (lh | kk)  (lh | mm) + (lk | hk)
 1 l
1
1  lm
hk | H|  k  
2
[  Fmh  ( lh | ml) + (mh | kk) 
(27)
(28)
(mh | ll) + ( mk | hk)]
 1 m
1
1  lm
hk | H|  h  
[  Flk  ( mk | ml) + (lk | hh ) 
2
(29)
(lk | mm ) + (lh | hk)]
 1 l
1
1  lm
hk | H|  h  
2
[  Fmk  ( lk | ml) + (mk | hh) 
( mk | ll) + (mh | hk)]
 1 s
1  lm
hk | H|  r   0
1 m
1  lm
hk | H|  r  
3
1 s
1  lm
hk | H|  h  
3
1 s
1  lm
hk | H|  k  
 1 m
1  lm
hk | H|  k  
(31)
 (lh | kr) 
(hr | lk)
(32)
2
 (mh | kr) 
(hr | mk)
(33)
2
 (ms| kl) 
(sl | mk)
(34)
 (ms| hl)  (sl | mh)
(35)
3
1 l
1  lm
hk | H|  r  
(30)
2
3
2
3
2
[  Flh + (kk | lh)  (mm | lh) + (ml | hm)
(36)
 (kl | hk)]
 1 l
1  lm
hk | H|  k  
3
2
[  Fmh + (kk | mh)  (ll | mh) + (ml | hl )
(37)
 (km | hk)]
 1 m
1  lm
hk | H|  h  
3
2
[  Flk + (hh | lk)  (mm | lk) + (ml | mk) 
(hl | hk)]
 1 l
1  lm
hk | H|  h  
3
2
(38)
[  Fmk + (hh | mk)  (ll | mk) + (ml | lk) 
(39)
(hm | hk)]
Procedure dodo.c
Interactions between the doubly excited configurations.
Type 1 - Type 1:
 1 ll
1  mm
hh | H|  kk   0
(40)
 1 mm
1  mm
hh | H|  kk  (hk | hk)
(41)
 1 ll
1  mm
hh | H|  hh  (lm | lm)
(42)
3
Type 1 - Type 2:
 1 ln
1  mm
hh | H|  kk   0
(43)
 1 ln
1  mm
hh | H|  hh   2 (lm | mn)
(44)
 1 mn
1  mm
hh | H|  kk   0
(45)
 1 mn
1  mm
hh | H|  hh   2  Fmn + (mm | mn)  2(hh | mn) + (hm | hn)
(46)
 1 lm
1  mm
hh | H|  hh   2  Fml + (mm | ml )  2(hh | ml) + (hm | hl)
(47)
Type 1 - Type 3:
 1 ll
1  mm
hh | H|  jk   0
(48)
 1 ll
1  mm
hh | H|  jh   0
(49)
 1 ll
1  mm
hh | H|  hk   0
(50)
 1 mm
1  mm
hh | H|  jk  
(51)
2 (jh | hk)
 1 mm
1  mm
hh | H|  hk   2  Fhk  (hk | hh) + 2(hk | mm)  (hm | km)
 1 mm
1  mm
hh | H|  hj   2 Fhj  (hj| hh ) + 2(hj | mm)  (hm | jm)
(52)
(53)
Type 1 - Type 4:
 1 ln
1  mm
hh | H|  jk   0
(54)
 1 lm
1  mm
hh | H|  jk   0
(55)
 1 lm
1  mm
hh | H|  hk   2(hk | lm)  (kl | mh)
(56)
 1 mn
1  mm
hh | H|  hk  2(hk | mn)  (kn | mh)
(57)
 1 lm
1  mm
hh | H|  jn   2(jh | ml)  (jl | mh)
(58)
 1 mn
1  mm
hh | H|  jn   2(jh | mn)  (jn | mh)
(59)
Type 1 - Type 5:
 1 ln
1  mm
hh | H|  jk   0
(60)
 1 lm
1  mm
hh | H|  jk   0
(61)
 1 lm
1  mm
hh | H|  hk   3 (kl | mh)
(62)
 1 mn
1  mm
3 (kn | mh)
hh | H|  hk  
(63)
 1 lm
1  mm
hh | H|  jn  
3 (jl | mh)
(64)
 1 mn
1  mm
hh | H|  jn   3 (jn | mh)
(65)
4
Type 2 - Type 2:
 1 no
1  lm
hh | H|  kk   0
(66)
 1 no
1  lm
hh | H|  hh  (ln | mo) + (lo | mn)
(67)
 1 lo
1  lm
hh | H|  kk   0
(68)
 1 lo
1  lm
hh | H|  hh   Fmo  2(hh | mo) + (hm | ho) + (ll | mo) + (lo | ml)
(69)
 1 nl
1  lm
hh | H|  hh   Fmn  2(hh | mn) + (hm | hn) + (ll | mn) + (ln | ml)
(70)
 1 mo
1  lm
hh | H|  hh   Flo  2(hh | lo) + (hl | ho) + (mm | lo) + (mo | ml)
(71)
 1 mn
1  lm
hh | H|  hh   Fln  2(hh | ln) + (hl | hn) + (mm | ln) + (mn | ml)
(72)
 1 lm
1  lm
hh | H|  kk  (hk | hk)
(73)
Type 2 - Type 3:
 1 nn
1  lm
hh | H|  jk   0
(74)
 1 nn
1  lm
hh | H|  hk   0
(75)
 1 ll
1  lm
hh | H|  hk   2(ml | hk)  (mh | kl)
(76)
 1 mm
1  lm
hh | H|  hk   2(ml | hk)  (hl | km)
(77)
 1 ll
1  lm
hh | H|  jh   2(ml | hj)  (jl | hm)
 1 mm
1  lm
hh | H|  jh   2(ml | hj)  (hl | jm)
(78)
(79)
Type 2 - Type 4:
 1 no
1  lm
hh | H|  jk   0
(80)
 1 mn
1  lm
hh | H|  jk   0
(81)
 1 no
1  lm
hh | H|  hk   0
(82)
 1 mn
1  lm
hh | H|  hk   2  (ln | hk)  0.5(hl | kn)
(83)
 1 mo
1  lm
hh | H|  hk   2  (lo | hk)  0.5(hl | ko)
(84)
 1 nl
1  lm
hh | H|  hk   2  (mn | hk)  0.5(hm | kn)
(85)
 1 lo
1  lm
hh | H|  hk   2  (mo | hk)  0.5(hm | ko)
(86)
 1 mn
1  lm
2  (ln | jh)  0.5(hl | jn)
hh | H|  jh  
(87)
 1 mo
1  lm
hh | H|  jh   2  (lo | jh)  0.5(hl | jo)
(88)
5
 1 nl
1  lm
2 (mn | jh)  0.5(mh | jn)
hh | H|  jh  
(89)
 1 lo
1  lm
2  (mo | jh)  0.5(mh | jo)
hh | H|  jh  
(90)
 1 lo
1  lm
hh | H|  jh   2  (mo | jh)  0.5(mh | jo)
(91)
 1 lm
1  lm
hh | H|  jk  
(92)
2 (hj| hk)
 1 lm
1  lm
hh | H|  hk   2[(Fhk  (hh | hk) + (ll | hk)  0.5(kl | hl) + (mm | hk)
 0.5(hm | km)]
(93)
 1 lm
1  lm
hh | H|  hj   2 [Fhj  (hh | hj) + (ll | hj)  0.5(jl | hl) + (mm | hj)
(94)
 0.5(hm | jm)]
Type 2 - Type 5:
 1 no
1  lm
hh | H|  jk   0
(95)
 1 nm
1  lm
hh | H|  jk   0
(96)
 1 no
1  lm
hh | H|  hk   0
(97)
 1 nm
1  lm
hh | H|  hk  
3
 1 mo
1  lm
hh | H|  hk  
3
 1 nl
1  lm
hh | H|  hk  
3
 1 lo
1  lm
hh | H|  hk  
3
 1 nm
1  lm
hh | H|  jh  
3
 1 mo
1  lm
hh | H|  jh  
3
 1 nl
1  lm
hh | H|  jh  
 1 lo
1  lm
hh | H|  jh  
2
(lh | nk)
(98)
2
(lh | ok)
(99)
2
(mh | nk)
(100)
2
(mh | ok)
(101)
2
(hl | jn)
(102)
2
3
(hl | jo)
(hm | jn)
(104)
(hm | jo)
(105)
2
3
2
(103)
 1 lm
1  lm
hh | H|  jk   0
 1 lm
1  lm
hh | H|  hk  
 1 lm
1  lm
hh | H|  hj  
3
(106)
2
3
 (hl | kl) 
2
(hm | km)
(hl | jl)  (hm | jm)
(107)
(108)
Type 3 - Type 3:
 1 nn
1  mm
hk | H|  gj   0
(109)
 1 mm
1  mm
hk | H|  gj  (gh | jk) + (gk | hj)
 1 nn
1  mm
hk | H|  hj   0
(110)
(111)
6
 1 mm
1  mm
hk | H|  hj   Fjk  2(mm | jk) + (km | jm) + (hj | hk) + (hh | jk)
(112)
 1 mm
1  mm
hk | H|  gh   Fgk  2(mm | gk) + (km | gm) + (gh | hk) + (hh | gk)
(113)
 1 mm
1  mm
hk | H|  jk   Fhj  2(mm | hj) + (hm | jm) + (kj| hk) + (kk | hj)
(114)
 1 mm
1  mm
hk | H|  gk   Fhg  2(mm | hg) + (hm | gm) + (gk | hk) + (kk | hg)
(115)
 1 nn
1  mm
hk | H|  hk   0
(116)
Type 3 - Type 4:
 1 ln
1  mm
hk | H|  gj   0
(117)
 1 ln
1  mm
hk | H|  hj   0
(118)
 1 mn
1  mm
hk | H|  gj   0
(119)
 1 mn
1
1  mm
hk | H|  hj  
2
 (km | jn) 
2(mn | jk)
(120)
 1 mn
1
1  mm
hk | H|  kj  
2
 (hm | jn) 
2(mn | jh)
(121)
 (hm | jn) 
2(mn | jh)
(122)
 1 mn
1
1  mm
hk | H|  kj  
2
 1 mn
1
1  mm
hk | H|  gh  
2
 (km | gn) 
2(mn | gk)
(123)
 1 mn
1
1  mm
hk | H|  gk  
2
 (hm | gn) 
2(mn | gh)
(124)
 1 lm
1
1  mm
hk | H|  hj  
2
 (km | jl) 
2(ml | jk)
(125)
 1 lm
1
1  mm
hk | H|  kj  
2
 ( hm | jl) 
2( ml | jh )
(126)
 1 lm
1
1  mm
hk | H|  gh  
2
 (km | gl) 
2(ml | gk)
(127)
 1 lm
1  mm
hk | H|  gk   2  (hm | gl)  2(ml | gh)
(128)
 1 ln
1  mm
hk | H|  hk   2 (ml | mn)
(129)
 1 ln
1
1  mm
hk | H|  hk  
2
[2Fmn  2(hh | mn) + (hm | hn)  2(mn | kk)
+ (km | kn) + 2(mn | mm)]
 1 lm
1
1  mm
hk | H|  hk  
2
[2Fml  2(hh | ml) + (hm | hl)  2(lm | kk)
+ (km | lk) + 2(lm | mm)]
(130)
(131)
Type 3 - Type 5:
 1 ln
1  mm
hk | H|  gj   0
(132)
 1 ln
1  mm
hk | H|  hj   0
(133)
 1 mn
1  mm
hk | H|  gj   0
(134)
 1 lm
1  mm
hk | H|  hj  
3
2
(mk | lj)
(135)
7
 1 lm
1  mm
hk |H|  kj  
3
 1 lm
1  mm
hk | H|  gh  
3
 1 lm
1  mm
hk | H|  gk  
3
 1 mn
1  mm
hk | H|  hj  
3
 1 mn
1  mm
hk | H|  kj  
3
 1 mn
1  mm
hk | H|  gh  
3
 1 mn
1  mm
hk | H|  gk  
3
2
(mh|lj)
(136)
2
(mk | lg)
(137)
2
(mh | lg)
(138)
2
(mk | nj)
(139)
2
(mh | nj)
(140)
2
(mk | ng)
(141)
2
(mh | ng)
(142)
 1 ln
1  mm
hk | H|  hk   0
 1 mn
1  mm
hk | H|  hk  
3
 1 lm
1  mm
hk | H|  hk  
3
(143)
2
 (km | kn) 
(hm | hn)
2
 (hm | hl) 
(km | kl)
(144)
(145)
Type 4 - Type 4
 1 no
1  lm
hk | H|  gj   0
(146)
 1 no
1  lm
hk | H|  gj   0
(147)
 1 no
1  lm
hk | H|  hk  (ln | mo) + (lo | mn)
(148)
 1 lo
1  lm
hk | H|  hj   (kj| mo) + 0.5(jo | mk)
(149)
 1 mo
1  lm
hk | H|  hj   (kj| lo) + 0.5( jo | lk)
(150)
 1 nl
1  lm
hk | H|  hj   (kj| mn) + 0.5(jn | mk)
(151)
 1 nm
1  lm
hk | H|  hj   (kj| ln) + 0.5(jn | lk)
(152)
 1 lo
1  lm
hk | H|  gh   (kg | mo) + 0.5(go | mk)
(153)
 1 mo
1  lm
hk | H|  gh   (kg | lo) + 0.5(go | lk)
(154)
 1 nl
1  lm
hk | H|  gh   (kg | mn) + 0.5(gn | mk)
(155)
 1 nm
1  lm
hk | H|  gh   (kg | ln) + 0.5( gn | lk)
(156)
 1 lo
1  lm
hk | H|  gk   (hg | mo) + 0.5( go | mh)
(157)
 1 mo
1  lm
hk | H|  gk   (hg | lo) + 0.5(go | lh)
(158)
 1 nl
1  lm
hk | H|  gk   (hg | mn) + 0.5(gn | mh)
(159)
 1 nm
1  lm
hk | H|  gk   (hg | ln) + 0.5(gn | lh)
(160)
 1 lo
1  lm
hk | H|  kj   (hj| mo) + 0.5(jo | mh)
(161)
8
 1 mo
1  lm
hk | H|  kj   (hj| lo) + 0.5(jo | hl)
(162)
 1 nl
1  lm
hk | H|  kj   (hj| mn) + 0.5(jn | hm)
(163)
 1 nm
1  lm
hk | H|  kj   (hj| ln) + 0.5 (jn | hl)
(164)
 1 lm
1  lm
hk | H|  gj  (kj| lj) + 0.5(hj| gk)
 1 lo
1  lm
hk | H|  hk   Fmo  (hh | mo)  (kk | mo) + 0.5(hm | ho) + 0.5(km | ko)
+ (ll | mo) + (ml | ol)
(165)
(166)
 1 mo
1  lm
hk | H|  hk   Flo  (hh | lo)  (kk | lo) + 0.5(hl | ho) + 0.5 (kl | ko)
(167)
+ (mm | lo) + (ml | om)
 1 ln
1  lm
hk | H|  hk   Fmn  (hh | mn)  (kk | mn) + 0.5(hm | hn) + 0.5(km | kn)
+ (ll | mn) + (ml | nl)
(168)
 1 mn
1  lm
hk | H|  hk   Fln  (hh | ln)  (kk | ln) + 0.5(hl | hn) + 0.5(kl | kn)
(169)
+ (mm | ln) + (ml | mn)
 1 lm
1 lm
hk |H| hj   Fkj  (hh|kj)  (hk|hj) + 0.5 (kl| jl) + 0.5 (km| jm)
(170)
+ (ll|kj) +(mm|kj)
 1 lm
1  lm
hk | H|  gh   Fgk  (hh | gk)  (hk | gh) + 0.5 (kl | gl) + 0.5 (km | gm)
+ (ll | gk) + (mm | gk)
 1 lm
1  lm
hk | H|  jk   Fhj  (kk | hj)  (hk | jk) + 0.5(hl | jl) + 0.5(hm | jm)
+ (ll | hj) + (mm | hj)
 1 lm
1  lm
hk | H|  gk   Fhg  (kk | hg)  (hk | gk) + 0.5(hl | gl) + 0.5(hm | gh)
+ (ll | gh) + (mm | gh)
(171)
(172)
(173)
Type 4 - Type 5
 1 no
1  lm
hk | H|  gj   0
(174)
 1 no
1  lm
hk | H|  hj   0
(175)
 1 no
1  lm
hk | H|  hk   0
(176)
 1 lo
1  lm
hk | H|  hj  
3
 1 mo
1  lm
hk | H|  hj  
3
2
(km | oj)
(177)
2
(kl | oj)
(178)
 1 ln
1  lm
hk | H|  hj  
3
 1 mn
1  lm
hk | H|  hj  
3
 1 lo
1  lm
hk | H|  gh  
3
 1 mo
1  lm
hk | H|  gh  
 1 ln
1  lm
hk | H|  gh  
 1 mn
1  lm
hk | H|  gh  
2
(km | nj)
(179)
2
(kl | nj)
(180)
2
(km | go)
(181)
(kl | go)
(182)
(km | gn)
(183)
3
3
3
2
2
2
(kl | gn)
(184)
9
 1 lo
1  lm
hk | H|  gk  
3
 1 mo
1  lm
hk | H|  gk  
 1 ln
1  lm
hk | H|  gk  
(hm | go)
(185)
(hl | go)
(186)
(hm | gn)
(187)
2
3
3
2
 1 mn
1  lm
hk | H|  gk  
3
 1 mo
1  lm
hk | H|  jk  
3
 1 ln
1  lm
hk | H|  jk  
2
2
(hl | gn)
(188)
2
(hl | oj)
(189)
3
2
(hm | nj)
(190)
 1 lm
1  lm
hk | H|  gj   0
 1 no
1  lm
hk | H|  gj  
3
(191)
 (km | ko) 
(hm | ho)
(192)
2
 (kl | ko) 
(hl | ho)
(193)
2
 (hm | hn) 
2
 1 mo
1  lm
hk | H|  hk  
3
 1 ln
1  lm
hk | H|  hk  
3
 1 mn
1  lm
hk | H|  hk  
3
 1 lm
1  lm
hk | H|  hj  
3
 1 lm
1  lm
hk | H|  gh  
3
 1 lm
1  lm
hk | H|  jk  
3
 1 lm
1  lm
hk | H|  gk  
3
 1 lm
1  lm
hk | H|  hk  
3
(km | kn)
2
 (hl | hn) 
2
 (jm | km) 
2
 (kl | gl) 
2
 (jm | hm) 
2
 (hl | gl) 
2
 (mk| mk) + ( hl| hl) 
(194)
(kl | kn)
(195)
(kl | jl)
(196)
(gm | km)
(197)
(hl | jl)
(198)
(gm | hm)
(199)
(kl| kl)  (hm| hm)
(200)
Type 5 - Type 5:
 1 no
1  lm
hk | H|  gj   0
(201)
 1 no
1  lm
hk | H|  hj   0
(202)
 1 no
1  lm
hk | H|  hk  (ln | mo)  (lo | mn)
(203)
 1 lo
3
1  lm
hk | H|  hj   2 (jo | mk)  (jk | mo)
(204)
 1 mo
1  lm
hk | H|  hj  
(205)
 1 ln
1  lm
hk | H|  hj  
3
3
2
2
(jo | kl) + (jk | lo)
(jn | km ) + (jk | mn)
(206)
 1 mn
3
1  lm
hk | H|  hj   2 (jn | kl)  (jk | ln)
 1 lo
1  lm
hk | H|  gh  
3
2
(go | km) + (gk | mo)
(207)
(208)
 1 mo
3
1  lm
hk | H|  gh   2 (go | kl)  (gk | lo)
 1 ln
3
1  lm
hk | H|  gh   2 (gn | km)  (gk | mn)
(209)
(210)
10
 1 mn
1  lm
hk | H|  gh  
3
2
(211)
(gn | kl)  (gk | ln)
 1 lo
3
1  lm
hk | H|  gk   2 (go | hm )  (gh | mo)
(212)
 1 mo
1  lm
hk | H|  gk  
3
 1 ln
1  lm
hk | H|  gk  
3
2
(go | hl)  (gh | lo)
(213)
2
(gn | hm)  (gh | mn)
(214)
 1 mn
3
1  lm
hk | H|  gk   2 (gn | hl)  (gh | ln)
(215)
 1 lo
1  lm
hk | H|  jk  
(216)
3
2
(jo | hm)  (hj| mo)
 1 mo
3
1  lm
hk | H|  jk   2 (jo | hl)  (hj| lo)
(217)
 1 ln
3
1  lm
hk | H|  jk   2 (jn | hm)  (hj| mn)
(218)
 1 mn
1  lm
hk | H|  jk  
(219)
3
2
(jn | hl)  (hj| ln)
 1 lm
1  lm
hk | H|  gj  (gh | jk)  (hj| gk)
(220)
 1 lo
3
3
1  lm
hk | H|  hk   Fmo  (hh | mo) + 2 (hm | ho)  (kk | mo) + 2 (km | ko)
+ (ll | mo)  (lo | lm)
 1 mo
1  lm
hk | H|  hk   Flo  (hh| lo) 
3
2
(hl| ho)  (kk| lo) 
3
2
(kl| ko)
 (mm | lo) + (mo | lm)
 1 ln
1  lm
hk | H|  hk   Fmn + (hh | mn) 
3
2
(hm | hn)  (kk | mn) 
3
2
(km | kn)
 (ll | mn) + (ln | lm)
 1 mn
3
3
1  lm
hk | H|  hk   Fml  (hh| ln) + 2 (hl| hn)  (kk| ln) + 2 (kl| kn)
+ (mm| ln)  (mn| lm)
 1 lm
3
3
1  lm
hk | H|  hj   Fjk  (hh | jk) + 2 (kl | jl)  (mm | jk) + 2 (jm | km)
 (ll | mn)  (hk | hj)
 1 lm
1  lm
hk | H|  gh   Fgk  (hh | gk) 
3
2
(kl | gl) + (mm | gk) 
3
2
(gm | km)
 (ll | gk) + (hk | hg)
 1 lm
1  lm
hk | H|  jk   Fhj  (kk | hj) 
3
2
(hl | jl) + (mm | hj) 
3
2
(jm | hm)
+ (ll | hj) + (hk | jk)
 1 lm
3
3
1  lm
hk | H|  gk   Fgh + (kk | gh) + 2 (hl | gl)  (mm | gh) + 2 (gm | hm)
 (ll | gh)  (hk | gk)
(221)
(222)
(223)
(224)
(225)
(226)
(227)
(228)
Procedure h.c
Computation of the (ij | kl) integrals with the molecular orbitals and the electron electron repulsion matrix.
11
REFERENCE
1.
P.A. Straub, personal communication.
12
                                            
                Tel: (01) 632 2901
FAX: (01) 632 1280
e-mail: [email protected]
Supplementary Material
Semiempirical Computation of Large Organic Structures and their UV/vis Spectra:
Program Discription and Application to Poly(triacetylene) Hexamer and Taxotere
by Harold Baumann*, Rainer E. Martin and François Diederich
Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule,
Universitätstr. 16, CH-8092 Zürich
(9. 12. 1997)
Procedure sido.c 1
Interactions between the doubly and singly excited configurations and between the
doubly excited and the ground configuration.
 1   = (hl | hl)
 1  llhhl | H|
0
1
 1
 lm
hh | H|  0  =
(1)
2 (hl | hm)
(2)
2 (hm | km)
(3)
 1
1  mm
hk | H|  0  
 1
1  lm
hk | H|  0    (hm | kl) + (hl | km)
(4)
 1
1  lm
hk | H|  0   3 (hm | kl)  (hl | km)
(5)
 1  s  0
1  llhh | H|
r
(6)
 1  l  
1  llhh | H|
r
(7)
2 (hl | hr)
 1  s   2 (hl | ls)
1  llhh | H|
h
 1 l  =
1  llhh | H|
h
(8)
n
2 H hl + 2
  2(ii | hl) 
(ih | il) +
i
(9)
2  (ll | hl)  (hh | hl)
1
 1 s
 lm
kk | H|  r   0
(10)
 1 l
1  lm
kk | H|  r   (km | rk)
(11)
 1 m
1  lm
kk | H|  r   (kl | rk)
(12)
 1 s
1  lm
kk | H|  k  (kl | ms) + (km | ls)
(13)
 1 m
1  lm
kk | H|  k   Flk + (mk | lm )  (kl | kk) + (kl | mm)
(14)
 1 l
1  lm
kk | H|  k   Fmk + (lk | lm )  (km | kk) + (km | ll)
 1 s
1  mm
hk | H|  r   0
(15)
(16)
 1 m
1  mm
hk | H|  r  (km | hr) + (mh | kr)
(17)
1 s
1  mm
hk | H|  k   (mh | ms)
(18)
1 s
1  mm
hk | H|  h   (mk | ms)
(19)
1 m
1  mm
hk | H|  k   Fmh + (mk | hk ) + (mh | kk)  (mh | mm)
(20)
 1 m
1  mm
hk | H|  h   Fmk + (mh | hk) + (mk | hh)  (mk | mm)
(21)
 1 s
1  lm
hk | H|  r   0
(22)
1 m
1
1  lm
hk | H|  r  
2
 (kr | hl) + (hr | kl)
(23)
2
1 l
1
1  lm
hk | H|  r  
2
1 s
1  lm
hk | H|  h  
1
1 s
1  lm
hk | H|  h  
1
 (kr | hm) + (hr | km)
(24)
2
 (mk | ls ) + (lk | ms)
(25)
2
 (mh | ls) + (lh | ms)
(26)
1 m
1
1  lm
hk | H|  k  
2
  Flh  (mh | ml) + (lh | kk)  (lh | mm) + (lk | hk)
 1 l
1
1  lm
hk | H|  k  
2
[  Fmh  ( lh | ml) + (mh | kk) 
(27)
(28)
(mh | ll) + ( mk | hk)]
 1 m
1
1  lm
hk | H|  h  
[  Flk  ( mk | ml) + (lk | hh ) 
2
(29)
(lk | mm ) + (lh | hk)]
 1 l
1
1  lm
hk | H|  h  
2
[  Fmk  ( lk | ml) + (mk | hh) 
( mk | ll) + (mh | hk)]
 1 s
1  lm
hk | H|  r   0
1 m
1  lm
hk | H|  r  
3
1 s
1  lm
hk | H|  h  
3
1 s
1  lm
hk | H|  k  
 1 m
1  lm
hk | H|  k  
(31)
 (lh | kr) 
(hr | lk)
(32)
2
 (mh | kr) 
(hr | mk)
(33)
2
 (ms| kl) 
(sl | mk)
(34)
 (ms| hl)  (sl | mh)
(35)
3
1 l
1  lm
hk | H|  r  
(30)
2
3
2
3
2
[  Flh + (kk | lh)  (mm | lh) + (ml | hm)
(36)
 (kl | hk)]
 1 l
1  lm
hk | H|  k  
3
2
[  Fmh + (kk | mh)  (ll | mh) + (ml | hl )
(37)
 (km | hk)]
 1 m
1  lm
hk | H|  h  
3
2
[  Flk + (hh | lk)  (mm | lk) + (ml | mk) 
(hl | hk)]
 1 l
1  lm
hk | H|  h  
3
2
(38)
[  Fmk + (hh | mk)  (ll | mk) + (ml | lk) 
(39)
(hm | hk)]
Procedure dodo.c
Interactions between the doubly excited configurations.
Type 1 - Type 1:
 1 ll
1  mm
hh | H|  kk   0
(40)
 1 mm
1  mm
hh | H|  kk  (hk | hk)
(41)
 1 ll
1  mm
hh | H|  hh  (lm | lm)
(42)
3
Type 1 - Type 2:
 1 ln
1  mm
hh | H|  kk   0
(43)
 1 ln
1  mm
hh | H|  hh   2 (lm | mn)
(44)
 1 mn
1  mm
hh | H|  kk   0
(45)
 1 mn
1  mm
hh | H|  hh   2  Fmn + (mm | mn)  2(hh | mn) + (hm | hn)
(46)
 1 lm
1  mm
hh | H|  hh   2  Fml + (mm | ml )  2(hh | ml) + (hm | hl)
(47)
Type 1 - Type 3:
 1 ll
1  mm
hh | H|  jk   0
(48)
 1 ll
1  mm
hh | H|  jh   0
(49)
 1 ll
1  mm
hh | H|  hk   0
(50)
 1 mm
1  mm
hh | H|  jk  
(51)
2 (jh | hk)
 1 mm
1  mm
hh | H|  hk   2  Fhk  (hk | hh) + 2(hk | mm)  (hm | km)
 1 mm
1  mm
hh | H|  hj   2 Fhj  (hj| hh ) + 2(hj | mm)  (hm | jm)
(52)
(53)
Type 1 - Type 4:
 1 ln
1  mm
hh | H|  jk   0
(54)
 1 lm
1  mm
hh | H|  jk   0
(55)
 1 lm
1  mm
hh | H|  hk   2(hk | lm)  (kl | mh)
(56)
 1 mn
1  mm
hh | H|  hk  2(hk | mn)  (kn | mh)
(57)
 1 lm
1  mm
hh | H|  jn   2(jh | ml)  (jl | mh)
(58)
 1 mn
1  mm
hh | H|  jn   2(jh | mn)  (jn | mh)
(59)
Type 1 - Type 5:
 1 ln
1  mm
hh | H|  jk   0
(60)
 1 lm
1  mm
hh | H|  jk   0
(61)
 1 lm
1  mm
hh | H|  hk   3 (kl | mh)
(62)
 1 mn
1  mm
3 (kn | mh)
hh | H|  hk  
(63)
 1 lm
1  mm
hh | H|  jn  
3 (jl | mh)
(64)
 1 mn
1  mm
hh | H|  jn   3 (jn | mh)
(65)
4
Type 2 - Type 2:
 1 no
1  lm
hh | H|  kk   0
(66)
 1 no
1  lm
hh | H|  hh  (ln | mo) + (lo | mn)
(67)
 1 lo
1  lm
hh | H|  kk   0
(68)
 1 lo
1  lm
hh | H|  hh   Fmo  2(hh | mo) + (hm | ho) + (ll | mo) + (lo | ml)
(69)
 1 nl
1  lm
hh | H|  hh   Fmn  2(hh | mn) + (hm | hn) + (ll | mn) + (ln | ml)
(70)
 1 mo
1  lm
hh | H|  hh   Flo  2(hh | lo) + (hl | ho) + (mm | lo) + (mo | ml)
(71)
 1 mn
1  lm
hh | H|  hh   Fln  2(hh | ln) + (hl | hn) + (mm | ln) + (mn | ml)
(72)
 1 lm
1  lm
hh | H|  kk  (hk | hk)
(73)
Type 2 - Type 3:
 1 nn
1  lm
hh | H|  jk   0
(74)
 1 nn
1  lm
hh | H|  hk   0
(75)
 1 ll
1  lm
hh | H|  hk   2(ml | hk)  (mh | kl)
(76)
 1 mm
1  lm
hh | H|  hk   2(ml | hk)  (hl | km)
(77)
 1 ll
1  lm
hh | H|  jh   2(ml | hj)  (jl | hm)
 1 mm
1  lm
hh | H|  jh   2(ml | hj)  (hl | jm)
(78)
(79)
Type 2 - Type 4:
 1 no
1  lm
hh | H|  jk   0
(80)
 1 mn
1  lm
hh | H|  jk   0
(81)
 1 no
1  lm
hh | H|  hk   0
(82)
 1 mn
1  lm
hh | H|  hk   2  (ln | hk)  0.5(hl | kn)
(83)
 1 mo
1  lm
hh | H|  hk   2  (lo | hk)  0.5(hl | ko)
(84)
 1 nl
1  lm
hh | H|  hk   2  (mn | hk)  0.5(hm | kn)
(85)
 1 lo
1  lm
hh | H|  hk   2  (mo | hk)  0.5(hm | ko)
(86)
 1 mn
1  lm
2  (ln | jh)  0.5(hl | jn)
hh | H|  jh  
(87)
 1 mo
1  lm
hh | H|  jh   2  (lo | jh)  0.5(hl | jo)
(88)
5
 1 nl
1  lm
2 (mn | jh)  0.5(mh | jn)
hh | H|  jh  
(89)
 1 lo
1  lm
2  (mo | jh)  0.5(mh | jo)
hh | H|  jh  
(90)
 1 lo
1  lm
hh | H|  jh   2  (mo | jh)  0.5(mh | jo)
(91)
 1 lm
1  lm
hh | H|  jk  
(92)
2 (hj| hk)
 1 lm
1  lm
hh | H|  hk   2[(Fhk  (hh | hk) + (ll | hk)  0.5(kl | hl) + (mm | hk)
 0.5(hm | km)]
(93)
 1 lm
1  lm
hh | H|  hj   2 [Fhj  (hh | hj) + (ll | hj)  0.5(jl | hl) + (mm | hj)
(94)
 0.5(hm | jm)]
Type 2 - Type 5:
 1 no
1  lm
hh | H|  jk   0
(95)
 1 nm
1  lm
hh | H|  jk   0
(96)
 1 no
1  lm
hh | H|  hk   0
(97)
 1 nm
1  lm
hh | H|  hk  
3
 1 mo
1  lm
hh | H|  hk  
3
 1 nl
1  lm
hh | H|  hk  
3
 1 lo
1  lm
hh | H|  hk  
3
 1 nm
1  lm
hh | H|  jh  
3
 1 mo
1  lm
hh | H|  jh  
3
 1 nl
1  lm
hh | H|  jh  
 1 lo
1  lm
hh | H|  jh  
2
(lh | nk)
(98)
2
(lh | ok)
(99)
2
(mh | nk)
(100)
2
(mh | ok)
(101)
2
(hl | jn)
(102)
2
3
(hl | jo)
(hm | jn)
(104)
(hm | jo)
(105)
2
3
2
(103)
 1 lm
1  lm
hh | H|  jk   0
 1 lm
1  lm
hh | H|  hk  
 1 lm
1  lm
hh | H|  hj  
3
(106)
2
3
 (hl | kl) 
2
(hm | km)
(hl | jl)  (hm | jm)
(107)
(108)
Type 3 - Type 3:
 1 nn
1  mm
hk | H|  gj   0
(109)
 1 mm
1  mm
hk | H|  gj  (gh | jk) + (gk | hj)
 1 nn
1  mm
hk | H|  hj   0
(110)
(111)
6
 1 mm
1  mm
hk | H|  hj   Fjk  2(mm | jk) + (km | jm) + (hj | hk) + (hh | jk)
(112)
 1 mm
1  mm
hk | H|  gh   Fgk  2(mm | gk) + (km | gm) + (gh | hk) + (hh | gk)
(113)
 1 mm
1  mm
hk | H|  jk   Fhj  2(mm | hj) + (hm | jm) + (kj| hk) + (kk | hj)
(114)
 1 mm
1  mm
hk | H|  gk   Fhg  2(mm | hg) + (hm | gm) + (gk | hk) + (kk | hg)
(115)
 1 nn
1  mm
hk | H|  hk   0
(116)
Type 3 - Type 4:
 1 ln
1  mm
hk | H|  gj   0
(117)
 1 ln
1  mm
hk | H|  hj   0
(118)
 1 mn
1  mm
hk | H|  gj   0
(119)
 1 mn
1
1  mm
hk | H|  hj  
2
 (km | jn) 
2(mn | jk)
(120)
 1 mn
1
1  mm
hk | H|  kj  
2
 (hm | jn) 
2(mn | jh)
(121)
 (hm | jn) 
2(mn | jh)
(122)
 1 mn
1
1  mm
hk | H|  kj  
2
 1 mn
1
1  mm
hk | H|  gh  
2
 (km | gn) 
2(mn | gk)
(123)
 1 mn
1
1  mm
hk | H|  gk  
2
 (hm | gn) 
2(mn | gh)
(124)
 1 lm
1
1  mm
hk | H|  hj  
2
 (km | jl) 
2(ml | jk)
(125)
 1 lm
1
1  mm
hk | H|  kj  
2
 ( hm | jl) 
2( ml | jh )
(126)
 1 lm
1
1  mm
hk | H|  gh  
2
 (km | gl) 
2(ml | gk)
(127)
 1 lm
1  mm
hk | H|  gk   2  (hm | gl)  2(ml | gh)
(128)
 1 ln
1  mm
hk | H|  hk   2 (ml | mn)
(129)
 1 ln
1
1  mm
hk | H|  hk  
2
[2Fmn  2(hh | mn) + (hm | hn)  2(mn | kk)
+ (km | kn) + 2(mn | mm)]
 1 lm
1
1  mm
hk | H|  hk  
2
[2Fml  2(hh | ml) + (hm | hl)  2(lm | kk)
+ (km | lk) + 2(lm | mm)]
(130)
(131)
Type 3 - Type 5:
 1 ln
1  mm
hk | H|  gj   0
(132)
 1 ln
1  mm
hk | H|  hj   0
(133)
 1 mn
1  mm
hk | H|  gj   0
(134)
 1 lm
1  mm
hk | H|  hj  
3
2
(mk | lj)
(135)
7
 1 lm
1  mm
hk |H|  kj  
3
 1 lm
1  mm
hk | H|  gh  
3
 1 lm
1  mm
hk | H|  gk  
3
 1 mn
1  mm
hk | H|  hj  
3
 1 mn
1  mm
hk | H|  kj  
3
 1 mn
1  mm
hk | H|  gh  
3
 1 mn
1  mm
hk | H|  gk  
3
2
(mh|lj)
(136)
2
(mk | lg)
(137)
2
(mh | lg)
(138)
2
(mk | nj)
(139)
2
(mh | nj)
(140)
2
(mk | ng)
(141)
2
(mh | ng)
(142)
 1 ln
1  mm
hk | H|  hk   0
 1 mn
1  mm
hk | H|  hk  
3
 1 lm
1  mm
hk | H|  hk  
3
(143)
2
 (km | kn) 
(hm | hn)
2
 (hm | hl) 
(km | kl)
(144)
(145)
Type 4 - Type 4
 1 no
1  lm
hk | H|  gj   0
(146)
 1 no
1  lm
hk | H|  gj   0
(147)
 1 no
1  lm
hk | H|  hk  (ln | mo) + (lo | mn)
(148)
 1 lo
1  lm
hk | H|  hj   (kj| mo) + 0.5(jo | mk)
(149)
 1 mo
1  lm
hk | H|  hj   (kj| lo) + 0.5( jo | lk)
(150)
 1 nl
1  lm
hk | H|  hj   (kj| mn) + 0.5(jn | mk)
(151)
 1 nm
1  lm
hk | H|  hj   (kj| ln) + 0.5(jn | lk)
(152)
 1 lo
1  lm
hk | H|  gh   (kg | mo) + 0.5(go | mk)
(153)
 1 mo
1  lm
hk | H|  gh   (kg | lo) + 0.5(go | lk)
(154)
 1 nl
1  lm
hk | H|  gh   (kg | mn) + 0.5(gn | mk)
(155)
 1 nm
1  lm
hk | H|  gh   (kg | ln) + 0.5( gn | lk)
(156)
 1 lo
1  lm
hk | H|  gk   (hg | mo) + 0.5( go | mh)
(157)
 1 mo
1  lm
hk | H|  gk   (hg | lo) + 0.5(go | lh)
(158)
 1 nl
1  lm
hk | H|  gk   (hg | mn) + 0.5(gn | mh)
(159)
 1 nm
1  lm
hk | H|  gk   (hg | ln) + 0.5(gn | lh)
(160)
 1 lo
1  lm
hk | H|  kj   (hj| mo) + 0.5(jo | mh)
(161)
8
 1 mo
1  lm
hk | H|  kj   (hj| lo) + 0.5(jo | hl)
(162)
 1 nl
1  lm
hk | H|  kj   (hj| mn) + 0.5(jn | hm)
(163)
 1 nm
1  lm
hk | H|  kj   (hj| ln) + 0.5 (jn | hl)
(164)
 1 lm
1  lm
hk | H|  gj  (kj| lj) + 0.5(hj| gk)
 1 lo
1  lm
hk | H|  hk   Fmo  (hh | mo)  (kk | mo) + 0.5(hm | ho) + 0.5(km | ko)
+ (ll | mo) + (ml | ol)
(165)
(166)
 1 mo
1  lm
hk | H|  hk   Flo  (hh | lo)  (kk | lo) + 0.5(hl | ho) + 0.5 (kl | ko)
(167)
+ (mm | lo) + (ml | om)
 1 ln
1  lm
hk | H|  hk   Fmn  (hh | mn)  (kk | mn) + 0.5(hm | hn) + 0.5(km | kn)
+ (ll | mn) + (ml | nl)
(168)
 1 mn
1  lm
hk | H|  hk   Fln  (hh | ln)  (kk | ln) + 0.5(hl | hn) + 0.5(kl | kn)
(169)
+ (mm | ln) + (ml | mn)
 1 lm
1 lm
hk |H| hj   Fkj  (hh|kj)  (hk|hj) + 0.5 (kl| jl) + 0.5 (km| jm)
(170)
+ (ll|kj) +(mm|kj)
 1 lm
1  lm
hk | H|  gh   Fgk  (hh | gk)  (hk | gh) + 0.5 (kl | gl) + 0.5 (km | gm)
+ (ll | gk) + (mm | gk)
 1 lm
1  lm
hk | H|  jk   Fhj  (kk | hj)  (hk | jk) + 0.5(hl | jl) + 0.5(hm | jm)
+ (ll | hj) + (mm | hj)
 1 lm
1  lm
hk | H|  gk   Fhg  (kk | hg)  (hk | gk) + 0.5(hl | gl) + 0.5(hm | gh)
+ (ll | gh) + (mm | gh)
(171)
(172)
(173)
Type 4 - Type 5
 1 no
1  lm
hk | H|  gj   0
(174)
 1 no
1  lm
hk | H|  hj   0
(175)
 1 no
1  lm
hk | H|  hk   0
(176)
 1 lo
1  lm
hk | H|  hj  
3
 1 mo
1  lm
hk | H|  hj  
3
2
(km | oj)
(177)
2
(kl | oj)
(178)
 1 ln
1  lm
hk | H|  hj  
3
 1 mn
1  lm
hk | H|  hj  
3
 1 lo
1  lm
hk | H|  gh  
3
 1 mo
1  lm
hk | H|  gh  
 1 ln
1  lm
hk | H|  gh  
 1 mn
1  lm
hk | H|  gh  
2
(km | nj)
(179)
2
(kl | nj)
(180)
2
(km | go)
(181)
(kl | go)
(182)
(km | gn)
(183)
3
3
3
2
2
2
(kl | gn)
(184)
9
 1 lo
1  lm
hk | H|  gk  
3
 1 mo
1  lm
hk | H|  gk  
 1 ln
1  lm
hk | H|  gk  
(hm | go)
(185)
(hl | go)
(186)
(hm | gn)
(187)
2
3
3
2
 1 mn
1  lm
hk | H|  gk  
3
 1 mo
1  lm
hk | H|  jk  
3
 1 ln
1  lm
hk | H|  jk  
2
2
(hl | gn)
(188)
2
(hl | oj)
(189)
3
2
(hm | nj)
(190)
 1 lm
1  lm
hk | H|  gj   0
 1 no
1  lm
hk | H|  gj  
3
(191)
 (km | ko) 
(hm | ho)
(192)
2
 (kl | ko) 
(hl | ho)
(193)
2
 (hm | hn) 
2
 1 mo
1  lm
hk | H|  hk  
3
 1 ln
1  lm
hk | H|  hk  
3
 1 mn
1  lm
hk | H|  hk  
3
 1 lm
1  lm
hk | H|  hj  
3
 1 lm
1  lm
hk | H|  gh  
3
 1 lm
1  lm
hk | H|  jk  
3
 1 lm
1  lm
hk | H|  gk  
3
 1 lm
1  lm
hk | H|  hk  
3
(km | kn)
2
 (hl | hn) 
2
 (jm | km) 
2
 (kl | gl) 
2
 (jm | hm) 
2
 (hl | gl) 
2
 (mk| mk) + ( hl| hl) 
(194)
(kl | kn)
(195)
(kl | jl)
(196)
(gm | km)
(197)
(hl | jl)
(198)
(gm | hm)
(199)
(kl| kl)  (hm| hm)
(200)
Type 5 - Type 5:
 1 no
1  lm
hk | H|  gj   0
(201)
 1 no
1  lm
hk | H|  hj   0
(202)
 1 no
1  lm
hk | H|  hk  (ln | mo)  (lo | mn)
(203)
 1 lo
3
1  lm
hk | H|  hj   2 (jo | mk)  (jk | mo)
(204)
 1 mo
1  lm
hk | H|  hj  
(205)
 1 ln
1  lm
hk | H|  hj  
3
3
2
2
(jo | kl) + (jk | lo)
(jn | km ) + (jk | mn)
(206)
 1 mn
3
1  lm
hk | H|  hj   2 (jn | kl)  (jk | ln)
 1 lo
1  lm
hk | H|  gh  
3
2
(go | km) + (gk | mo)
(207)
(208)
 1 mo
3
1  lm
hk | H|  gh   2 (go | kl)  (gk | lo)
 1 ln
3
1  lm
hk | H|  gh   2 (gn | km)  (gk | mn)
(209)
(210)
10
 1 mn
1  lm
hk | H|  gh  
3
2
(211)
(gn | kl)  (gk | ln)
 1 lo
3
1  lm
hk | H|  gk   2 (go | hm )  (gh | mo)
(212)
 1 mo
1  lm
hk | H|  gk  
3
 1 ln
1  lm
hk | H|  gk  
3
2
(go | hl)  (gh | lo)
(213)
2
(gn | hm)  (gh | mn)
(214)
 1 mn
3
1  lm
hk | H|  gk   2 (gn | hl)  (gh | ln)
(215)
 1 lo
1  lm
hk | H|  jk  
(216)
3
2
(jo | hm)  (hj| mo)
 1 mo
3
1  lm
hk | H|  jk   2 (jo | hl)  (hj| lo)
(217)
 1 ln
3
1  lm
hk | H|  jk   2 (jn | hm)  (hj| mn)
(218)
 1 mn
1  lm
hk | H|  jk  
(219)
3
2
(jn | hl)  (hj| ln)
 1 lm
1  lm
hk | H|  gj  (gh | jk)  (hj| gk)
(220)
 1 lo
3
3
1  lm
hk | H|  hk   Fmo  (hh | mo) + 2 (hm | ho)  (kk | mo) + 2 (km | ko)
+ (ll | mo)  (lo | lm)
 1 mo
1  lm
hk | H|  hk   Flo  (hh| lo) 
3
2
(hl| ho)  (kk| lo) 
3
2
(kl| ko)
 (mm | lo) + (mo | lm)
 1 ln
1  lm
hk | H|  hk   Fmn + (hh | mn) 
3
2
(hm | hn)  (kk | mn) 
3
2
(km | kn)
 (ll | mn) + (ln | lm)
 1 mn
3
3
1  lm
hk | H|  hk   Fml  (hh| ln) + 2 (hl| hn)  (kk| ln) + 2 (kl| kn)
+ (mm| ln)  (mn| lm)
 1 lm
3
3
1  lm
hk | H|  hj   Fjk  (hh | jk) + 2 (kl | jl)  (mm | jk) + 2 (jm | km)
 (ll | mn)  (hk | hj)
 1 lm
1  lm
hk | H|  gh   Fgk  (hh | gk) 
3
2
(kl | gl) + (mm | gk) 
3
2
(gm | km)
 (ll | gk) + (hk | hg)
 1 lm
1  lm
hk | H|  jk   Fhj  (kk | hj) 
3
2
(hl | jl) + (mm | hj) 
3
2
(jm | hm)
+ (ll | hj) + (hk | jk)
 1 lm
3
3
1  lm
hk | H|  gk   Fgh + (kk | gh) + 2 (hl | gl)  (mm | gh) + 2 (gm | hm)
 (ll | gh)  (hk | gk)
(221)
(222)
(223)
(224)
(225)
(226)
(227)
(228)
Procedure h.c
Computation of the (ij | kl) integrals with the molecular orbitals and the electron electron repulsion matrix.
11
REFERENCE
1.
P.A. Straub, personal communication.
12