MTD KWT 06 Linear Programming

  

Quantitative Analysis

Quantitative Analysis

for Management for Management

  Linear Programming

Linear Programming

  

Models:

Models:

  Linear Programming Linear Programming

  Problem Problem

  1. Tujuan adalah maximize or minimize

variabel dependen dari beberapa kuantitas

variabel independen (fungsi tujuan).

  

  2. Batasan-batasan yang diperlukan guna mencapai tujuan.

   Tujuan dan Batasan dinyatakan dalam persamaan linear.

  

Basic Assumptions of Linear

Basic Assumptions of Linear

  

Programming

Programming

   CertaintyProportionalityAdditivityDivisibilityNonnegativity

  Flair Furniture Company Flair Furniture Company

  Data - Data - Table 7.1 Table 7.1

Hours Required to Produce One Unit

  Department

  X 1 Tables

  X 2 Chairs Available Hours This Week Carpentry Painting/Varnishing

  4

  2

  3

  1 240 100 Profit/unit $7 $5

  Flair Furniture Company Flair Furniture Company

Table 7.1 Table 7.1 Data - Data - STEP 1:

   Objective: Maximize:  

  X

  X  

  STEP 2:   

  XX  (carpentry ) Constraints:

      

  XX  (painting & varnishing )  

  Flair Furniture Company Flair Furniture Company

  Feasible Region Feasible Region STEP 3: Plot Constraints

  120 100 rs ai Painting/Varnishing h

  80 C f o

  60 er b

  40 m Carpentry u Feasible N

  20 Region 20 40 60 80 100

  Flair Furniture Company Flair Furniture Company

  Isoprofit Lines Isoprofit Lines 120 STEP 4: Plot Objective Function

  100 rs Painting/Varnishing ai h

  80 C

  7X + 5X = 210

  1

  2 f o

  7X + 5X = 420

  60

  1

  2 er b

  40 Carpentry m u N

  20 20 40 60 80 100 Number of Tables

  Flair Furniture Company Flair Furniture Company

  Optimal Solution Optimal Solution 120 Corner Points

  Corner Points 100 rs Painting/Varnishing ai h

  2

80 C f

  Solution o

  60 er (X = 30, X = 40)

  1

  2 b

  40 m Carpentry u

3 N

  20

  1 20 40 60 80 100

  4

  Test Corner Point Solutions Test Corner Point Solutions

  Point 1) (0,0) => 7(0) + 5(0) = $0 Point 2) (0,100) => 7(0) + 5(80) = $400 Point 3) (30,40) => 7(30) + 5(40) = $410 Point 4) (50,0) => 7(50) + 5(0) = $350

  Solve Equations Simultaneously Solve Equations Simultaneously

  4X1 + 3X2 <= 240

  2X1 + 1X2 <= 100 X1 = 60 - 3/4 X2 X1 = 50 - 1/2 X2 60 - 3/4 X2 = 50 - 1/2 X2 60 - 50 = 3/4 X2 - 1/2 X2 10 = 1/4 X2 40 = X2; so, 4X1 + 3(40) = 240

  4X1 = 240 - 120 X1 = 30 To get X1 & X2 values for Point 3:

  

Special Cases in LP

Special Cases in LP

   InfeasibilityUnbounded SolutionsRedundancyDegeneracyMore Than One Optimal Solution

  A Problem with No Feasible A Problem with No Feasible

  

Solution

Solution

  X 2

  8

6 Region Satisfying 3rd Constraint

  4

  2

  2

  4

  6

  8 X 1 Region Satisfying First 2 Constraints

  A Solution Region That is A Solution Region That is

  

Unbounded to the Right

Unbounded to the Right

  X 2 X 1

  15

  10

  5 5 10 15 Feasible Region

  X 1

5 X

   >

  2 < 10

  X 1 +

  2X

2

> 10

  

A Problem with a

A Problem with a

  Redundant Constraint Redundant Constraint

  X 2

  30 Redundant

  2X + X < 30 1 2

  25 Constraint

  X 1 < 25

  20

  15

  • +

    X
  • 1 X < 20 2

      10 Feasible

      5 Region

      X 1

      5

      10

       15

       20

       25

       30

      

    An Example of Alternate

    An Example of Alternate

      Optimal Solutions Optimal Solutions

      8

      7 Optimal Solution Consists of All A

      Combinations of X and X Along

      6

      1

      2 the AB Segment

      5 Isoprofit Line for $8

      4

      3 Isoprofit Line for $12

      2 B Overlays Line Segment

      1 AB

      1

      2

      3

      4

      5

      6

      7

      8

      

    Marketing Applications

    Marketing Applications

      Media Selection - Win Big Gambling Club Medium Audience Cost Maximum Reached Per Ads Per Per Ad Ad($) Week TV spot (1 minute) 5,000 800

      12 Daily newspaper 8,500 925

      5 (full-page ad) Radio spot (30 2,400 290

      25 seconds, prime time) Radio spot (1 minute, 2,800 380

      20 afternoon)

      Win Big Gambling Club Win Big Gambling Club Maximize :       

      X X

      X X    

      Subject to :

      X 12 (max TV spots/week )

      1  

      X ( max newspaper ads/week)

      X ( -   max 30 sec. radio spots/week )

      X   (max 1 min. radio spots/week ) -

           X  X  X  X  ( weekly

          ad budget)

       

      X X(min radio spots/week )  

        290X 380X 1800 (max radio expense)

      3

      4

      

    Manufacturing Applications

    Manufacturing Applications

      Production Mix - Fifth Avenue

    Variety Selling Monthly Monthly Material Material

    of Tie Price per Contract Demand Required Require

      Tie ($) Minimum per Tie ments (Yds) All silk 6.70 6000 7000 0.125 100% silk All 3.55 10000 14000 0.08 100% polyester polyester Poly- 4.31 13000 16000 0.10 50% cotton poly/50% blend 1 cotton Poly- 4.81 6000 8500 0.10 30% cotton - poly/70% blend 2 cotton

      

    Fifth Avenue

    Fifth Avenue

      Maximize :

      4.08X

      3.07X

      

    3.56X

      4.00X

      1

      2

      3

      4 Subject to :   .

      X   (yards of silk)

       .  X    . X    . X   (yards polyester)   

       .  X    . X   (yards cotton)  

      X   (contract min, silk) X   (contract max, silk)

       X(contract min, all polyester)

       

      X(contract max, all polyester) 

       

      X  (contract min, blend 1) X(contract max, blend 1) 

      

      3 X(contract min, blend 2) 

       X  (contract max, blend 2)

       

      

    Manufacturing Applications

    Manufacturing Applications

      Truck Loading - Goodman Shipping Item Value ($) Weight (lbs) 1 22,500 7,500 2 24,000 7,500 3 8,000 3,000 4 9,500 3,500 5 11,500 4,000 6 9,750 3,500 3,500

      Goodman Shipping Goodman Shipping   

      Maximize load value :  X  X  X 

      X    

         X 

      X  

      Subject to :     

      X  X  X  X 

      X     

         X  (Capacity)

       

       X  

       X  

       X  

       X  

       X  

       

      X  

      

    Flair Furniture Company

    Flair Furniture Company

      

    Hours Required to Produce One Unit

    Available

      X 1 X 2 Department Hours This Tables Chairs Week Carpentry

      4 3 240 Painting/Varnishing

      2 1 100 Profit/unit $7 $5     

      X X (carpentry )  

      Constraints:     

      X X (painting & varnishing )  

      Maximize:  

      Objective: X

      X  

      

    Flair Furniture Company's

    Flair Furniture Company's

      

    Feasible Region & Corner Points

    Feasible Region & Corner Points

      X 2 s

      100

      ir

      B = (0,80)

      ha

       80 C

      f X   X  

       

       60

       o er

      C = (30,40)

      b

       40

      m FeasibleX   X  

        u Region

       20 N D = (50,0)

      20

      40

      60 80 100

      X Number of Tables

      

    Flair Furniture - Adding

    Flair Furniture - Adding

      Slack Variables Slack Variables Constraints: Constraints:   

      XX  (carpentry )  

         XX  (painting & varnishing )

        Constraints with Slack Variables Constraints with Slack Variables

           

      X X S (carpentry )   

           

      X X S (painting & varnishing )   

      Objective Function Objective FunctionX  

      X  

      Objective Function with Slack Variables Objective Function with Slack VariablesX   X   S   S

         

      Flair Furniture’s Initial Simplex Flair Furniture’s Initial Simplex

      

    Tableau

    Tableau

      Profit Real Slack per

      Production Constant Variables Variables

      Unit Mix Column Columns Columns

      Column Column Profit per

      C j

      $7 $5 $0 $0

      unit row Solution

      X 1 X S S Quantity 2 1 2 Mix Constraint

      $0 S 1

      2

      1 1 100

      equation rows

      $0 S 2

      4

      3 1 240

      Gross

      $0 $0 $0 $0 $0

      profit row Z j

      Net C - Z $7 $5 $0 $0 $0 j j

      

    Pivot Row, Pivot Number Identified

    Pivot Row, Pivot Number Identified

    in the Initial Simplex Tableau

    in the Initial Simplex Tableau

      C j Solution Mix

      X 1 X 2 S 1 S 2 Quantity

      $7 $5 $0 $0

      2

      1

      1

      4

      3

      $0 1 $0 $0 $0 $0 $7 $5 $0 $0 $0

      S 1 S 2 Z j C j - Z j

      100 240 $0 $0

      Pivot row Pivot number Pivot column

      

    Completed Second Simplex Tableau

    Completed Second Simplex Tableau

    for Flair Furniture

    for Flair Furniture

      C j Solution Mix

      X 1 X 2 S 1 S 2 Quantity

      $7 $5 $0 $0 1 1/2 1/2 1 -2

      $0 1 $7 $7/2 $7/2 $0 $0 $3/2 -$7/2 $0 $7

      X 1 S 2 Z j C j - Z j

      50

      40 $350

      Pivot Row, Column, and Number

    Pivot Row, Column, and Number

      

    Identified in Second Simplex Tableau

    Identified in Second Simplex Tableau

      C j Solution Mix

      X 1 X 2 S 1 S 2 Quantity

      $7 $5 $0 $0 1 1/2 1/2 1 -2

      $0 1 $7 $7/2 $7/2 $0 $0 $3/2 -$7/2 $0 $7

      X 1 S 2 Z j C j - Z j

      50

      40 $350 (Total Profit)

      Pivot row Pivot number Pivot column

      Calculating the New Calculating the New

      ( )

      1 1/2 1/2

      30

      1 3/2 -1/2

      = - x = - x

      ( )

      Corresponding number in new X 2 row

      ( )

      Number above pivot number

       row

      X

      X 1

      Number in old

      )

       row

      X 1

      Number in new

      1 Row Row for Flair’s Third Tableau for Flair’s Third Tableau (

      1

      X

      50 (1/2) (1/2) (1/2) (1/2) (1/2) (0) (1) (-2) (1) (40) = - x = - x = - x = - x

      

    Final Simplex Tableau for

    Final Simplex Tableau for

    the Flair Furniture Problem

    the Flair Furniture Problem

      C j Solution Mix

      X 1 X 2 S 1 S 2 Quantity

      $7 $5 $0 $0 1 3/2 -1/2 1 -2

      $5 1 $7 5 $1/2 $3/2 $0 $0 -$1/2 -$3/2 $7

      X 1 X 2 Z j C j - Z j

      30

      40 $410

      Simplex Steps for Simplex Steps for

    Maximization

      

    Maximization

      1. Choose the variable with the greatest positive C j - Z j to enter the solution.

      2. Determine the row to be replaced by selecting that one with the smallest (non-negative) quantity-to-pivot-column ratio.

      3. Calculate the new values for the pivot row.

      4. Calculate the new values for the other row(s).

      5. Calculate the C j and C j - Z j values for this tableau. If there are any C j - Z j values greater than zero, return to Step 1.

      Surplus & Artificial Variables Surplus & Artificial Variables Constraints Constraints   

      X Constraints-Surplus & Artificial Variables Constraints-Surplus & Artificial Variables Objective Function Objective Function

      X      : Min

      X X

      MA MA S

      : Min    

      X  

      X X

           

      X X

              

      X X A S

           A

             

            

      X   

      X X

      X X

          

      

    Objective Function-Surplus & Artificial Variables

    Objective Function-Surplus & Artificial Variables

      

    Simplex Steps for

    Simplex Steps for

      Minimization

    Minimization

      1. Choose the variable with the greatest negative C - Z to j j enter the solution.

      2. Determine the row to be replaced by selecting that one with the smallest (non-negative) quantity-to-pivot-column ratio.

      3. Calculate the new values for the pivot row.

      4. Calculate the new values for the other row(s).

      5. Calculate the C and C - Z values for this tableau. If there j j j are any C - Z values less than zero, return to Step 1. j j

      5 X

      1 2 -2 100 M A

      Infeasibility Infeasibility C j 5 8 0 M M Solution Mix

      X

      1 X

      2 S

      1 S

      2 A

      1 A

      2 Qty

      Special Cases Special Cases

      1 1 0 -2 3 -1 200

      8 X

      2

      1

    • -1 -1

      2

      1

      20 Z j 5 8 -2 31-M -21-M M 1800+20M C j -Z j

    2 M-31 2M+21

      

    Special Cases

    Special Cases

      C j

      6

    9 Solution Mix

      X

    1 X

      

    2

    S

      1 S

      2 Qty

      

    Unboundedness

    Unboundedness

    9 X

      30 S

      2 -2 -1

      1

      10 Z j -9

      9 18 270 C j -Z j 15 -18 Pivot Column

      2

      2 -1

      1

      Special Cases Special Cases

      Degeneracy Degeneracy C

      5

      8

      2 j Solution

      X X

      X S S S Qty

      1

      2

      3

      1

      2

      3 Mix

      8 X 1/4

      1 1 -2

      10

      2 S 4 1/3 -1

      1

      20

      2 S

      2 2 2/5

      1

      10

      3 Z

      2

      8

      8

      16

      80 j C -Z

      3

      6

      16 j j Pivot Column

    1 X

    2 X

      1

      12 C j -Z j

      2

      2

      3

      3 Z j

      1

      2 1 1/2

      6 S

      1

      

    Special Cases

    Special Cases

      2 3/2

      2 Qty

      1 S

      2 S

      X

      

    2

    Solution Mix

      3

      C j

      

    Multiple Optima

    Multiple Optima

    • -2

      

    Sensitivity Analysis

    Sensitivity Analysis

      

    High Note Sound Company

    High Note Sound Company

             

           

          

      X X

      X X

      X X : to Subject : Max

      

    Sensitivity Analysis

    Sensitivity Analysis

      

    High Note Sound Company

    High Note Sound Company

      

    Simplex Solution

    Simplex Solution

      

    High Note Sound Company

    High Note Sound Company

      C j 50 120 Solution Mix

      X

    1 X

      

    2

    S

      1 S

      2 Qty 120

      X

      2 1/2 1 ¼

      20 S

      2 5/2 -1/4

      1

      40 Z j 60 120 30 2400 C j -Z j

    • -30

      

    Simplex Solution

    Simplex Solution

      

    High Note Sound Company

    High Note Sound Company

      C j 50 120 Solution Mix

      X

    1 X

      

    2

    S

      1 S

      2 Qty 120

      X

      2 1/2 1 ¼

      20 S

      2

    5/2 -1/4

      1

      40 Z j 60 120 30 2400 C j -Z j

    • -10 -30

      Nonbasic Objective Function Nonbasic Objective Function

      

    Coefficients

    Coefficients

      C j 50 120 Solution Mix

      X

    1 X

      2 S

      1 S

      2 Qty 120

      X

      2 1/2 1 ¼

      20 S

      2

    5/2 -1/4

      1

      40 Z j 60 120 30 2400 C j -Z j

    • -10 -30

      Basic Objective Function Basic Objective Function

      Coefficients Coefficients C j 50 120 Solution Mix

      X

    1 X

      2 S

      1 S

      2 Qty 120+

      X

      2 1/2 1 ¼ 0

      20 S

      2 5/2 -1/4 1

      40 Z j 60+1/2120+30+1/40 2400+20

      C j -Z j -10-1/2

      0 -30-1/40

      

    Simplex Solution

    Simplex Solution

      

    High Note Sound Company

    High Note Sound Company

      C j 50 120 Solution Mix

      X

    1 X

      

    2

    S

      1 S

      2 Qty 120

      X

      2 1/2 1 ¼

      20 S

      2 5/2 -1/4

      1

      40 Z j 60 120 30 2400 C j -Z j

    • -30 Objective increases by 30 if 1 additional hour of electricians time is available.

      

    Steps to Form the Dual

    Steps to Form the Dual To form the Dual:

       If the primal is max., the dual is min., and vice versa.

       The right-hand-side values of the primal constraints become the objective coefficients of the dual.

      

    The primal objective function coefficients become

    the right-hand-side of the dual constraints.

       The transpose of the primal constraint coefficients become the dual constraint coefficients.

       Constraint inequality signs are reversed.

      Primal & Dual Primal & Dual      

           

           

      

      X X

      X X

      X X : to Subject : Max Primal: Primal:

      Dual Dual      

           

           

       U U U U U U

      : to Subject : Min

      40 M M-40

      $7 $5 U 1 S 1 Z j C j - Z j

      20 A 1 A 2 M M 1/2 -1 1/2

      40

      

    80

    20 -20

    $0

      

    80

    60 $0 $0 1 1/4 -1/4

      

    X

    1 X 2 S 1 S 2

      10 $2,400

      30

      C j Solution Mix Quantity

      Comparison of the Primal and Comparison of the Primal and Dual Optimal Tableaus Dual Optimal Tableaus u al ’s O pt im al S ol u ti on

      30 -10 -30 P ri m al ’s O pt im al S ol u tio n

      

    1/2

    1 1/4 5/2 -1/4 1 60 120

      

    X

    1 X 2 S 1 S 2 $50 $120 $0 $0

      40 $2,400

      20

      X 2 S 2 Z j C j - Z j

      $7 $5

      C j Solution Mix Quantity

    • -5/2 1 -1/2