MTD KWT 06 Linear Programming
Quantitative Analysis
Quantitative Analysis
for Management for ManagementLinear Programming
Linear Programming
Models:
Models:
Linear Programming Linear Programming
Problem Problem
1. Tujuan adalah maximize or minimize
variabel dependen dari beberapa kuantitas
variabel independen (fungsi tujuan).
2. Batasan-batasan yang diperlukan guna mencapai tujuan.
Tujuan dan Batasan dinyatakan dalam persamaan linear.
Basic Assumptions of Linear
Basic Assumptions of Linear
Programming
Programming
Certainty Proportionality Additivity Divisibility Nonnegativity
Flair Furniture Company Flair Furniture Company
Data - Data - Table 7.1 Table 7.1
Hours Required to Produce One Unit
Department
X 1 Tables
X 2 Chairs Available Hours This Week Carpentry Painting/Varnishing
4
2
3
1 240 100 Profit/unit $7 $5
Flair Furniture Company Flair Furniture Company
Table 7.1 Table 7.1 Data - Data - STEP 1:Objective: Maximize:
X
X
STEP 2:
X X (carpentry ) Constraints:
X X (painting & varnishing )
Flair Furniture Company Flair Furniture Company
Feasible Region Feasible Region STEP 3: Plot Constraints
120 100 rs ai Painting/Varnishing h
80 C f o
60 er b
40 m Carpentry u Feasible N
20 Region 20 40 60 80 100
Flair Furniture Company Flair Furniture Company
Isoprofit Lines Isoprofit Lines 120 STEP 4: Plot Objective Function
100 rs Painting/Varnishing ai h
80 C
7X + 5X = 210
1
2 f o
7X + 5X = 420
60
1
2 er b
40 Carpentry m u N
20 20 40 60 80 100 Number of Tables
Flair Furniture Company Flair Furniture Company
Optimal Solution Optimal Solution 120 Corner Points
Corner Points 100 rs Painting/Varnishing ai h
2
80 C f
Solution o
60 er (X = 30, X = 40)
1
2 b
40 m Carpentry u
3 N
20
1 20 40 60 80 100
4
Test Corner Point Solutions Test Corner Point Solutions
Point 1) (0,0) => 7(0) + 5(0) = $0 Point 2) (0,100) => 7(0) + 5(80) = $400 Point 3) (30,40) => 7(30) + 5(40) = $410 Point 4) (50,0) => 7(50) + 5(0) = $350
Solve Equations Simultaneously Solve Equations Simultaneously
4X1 + 3X2 <= 240
2X1 + 1X2 <= 100 X1 = 60 - 3/4 X2 X1 = 50 - 1/2 X2 60 - 3/4 X2 = 50 - 1/2 X2 60 - 50 = 3/4 X2 - 1/2 X2 10 = 1/4 X2 40 = X2; so, 4X1 + 3(40) = 240
4X1 = 240 - 120 X1 = 30 To get X1 & X2 values for Point 3:
Special Cases in LP
Special Cases in LP
Infeasibility Unbounded Solutions Redundancy Degeneracy More Than One Optimal Solution
A Problem with No Feasible A Problem with No Feasible
Solution
Solution
X 2
8
6 Region Satisfying 3rd Constraint
4
2
2
4
6
8 X 1 Region Satisfying First 2 Constraints
A Solution Region That is A Solution Region That is
Unbounded to the Right
Unbounded to the Right
X 2 X 1
15
10
5 5 10 15 Feasible Region
X 1
5 X
>
2 < 10
X 1 +
2X
2
> 10
A Problem with a
A Problem with a
Redundant Constraint Redundant Constraint
X 2
30 Redundant
2X + X < 30 1 2
25 Constraint
X 1 < 25
20
15
+
X 1 X < 20 2- -1 -1
- -2
- -30
-10 -30
-10 -30
- -30 Objective increases by 30 if 1 additional hour of electricians time is available.
- -5/2 1 -1/2
10 Feasible
5 Region
X 1
5
10
15
20
25
30
An Example of Alternate
An Example of Alternate
Optimal Solutions Optimal Solutions
8
7 Optimal Solution Consists of All A
Combinations of X and X Along
6
1
2 the AB Segment
5 Isoprofit Line for $8
4
3 Isoprofit Line for $12
2 B Overlays Line Segment
1 AB
1
2
3
4
5
6
7
8
Marketing Applications
Marketing Applications
Media Selection - Win Big Gambling Club Medium Audience Cost Maximum Reached Per Ads Per Per Ad Ad($) Week TV spot (1 minute) 5,000 800
12 Daily newspaper 8,500 925
5 (full-page ad) Radio spot (30 2,400 290
25 seconds, prime time) Radio spot (1 minute, 2,800 380
20 afternoon)
Win Big Gambling Club Win Big Gambling Club Maximize :
X X
X X
Subject to :
X 12 (max TV spots/week )
1
X ( max newspaper ads/week)
X ( - max 30 sec. radio spots/week )
X (max 1 min. radio spots/week ) -
X X X X ( weekly
ad budget)
X X (min radio spots/week )
290X 380X 1800 (max radio expense)
3
4
Manufacturing Applications
Manufacturing Applications
Production Mix - Fifth Avenue
Variety Selling Monthly Monthly Material Material
of Tie Price per Contract Demand Required Require
Tie ($) Minimum per Tie ments (Yds) All silk 6.70 6000 7000 0.125 100% silk All 3.55 10000 14000 0.08 100% polyester polyester Poly- 4.31 13000 16000 0.10 50% cotton poly/50% blend 1 cotton Poly- 4.81 6000 8500 0.10 30% cotton - poly/70% blend 2 cotton
Fifth Avenue
Fifth Avenue
Maximize :
4.08X
3.07X
3.56X
4.00X
1
2
3
4 Subject to : .
X (yards of silk)
. X . X . X (yards polyester)
. X . X (yards cotton)
X (contract min, silk) X (contract max, silk)
X (contract min, all polyester)
X (contract max, all polyester)
X (contract min, blend 1) X (contract max, blend 1)
3 X (contract min, blend 2)
X (contract max, blend 2)
Manufacturing Applications
Manufacturing Applications
Truck Loading - Goodman Shipping Item Value ($) Weight (lbs) 1 22,500 7,500 2 24,000 7,500 3 8,000 3,000 4 9,500 3,500 5 11,500 4,000 6 9,750 3,500 3,500
Goodman Shipping Goodman Shipping
Maximize load value : X X X
X
X
X
Subject to :
X X X X
X
X (Capacity)
X
X
X
X
X
X
Flair Furniture Company
Flair Furniture Company
Hours Required to Produce One Unit
AvailableX 1 X 2 Department Hours This Tables Chairs Week Carpentry
4 3 240 Painting/Varnishing
2 1 100 Profit/unit $7 $5
X X (carpentry )
Constraints:
X X (painting & varnishing )
Maximize:
Objective: X
X
Flair Furniture Company's
Flair Furniture Company's
Feasible Region & Corner Points
Feasible Region & Corner Points
X 2 s
100
ir
B = (0,80)
ha
80 C
f X X
60
o er
C = (30,40)
b
40
m Feasible X X
u Region
20 N D = (50,0)
20
40
60 80 100
X Number of Tables
Flair Furniture - Adding
Flair Furniture - Adding
Slack Variables Slack Variables Constraints: Constraints:
X X (carpentry )
X X (painting & varnishing )
Constraints with Slack Variables Constraints with Slack Variables
X X S (carpentry )
X X S (painting & varnishing )
Objective Function Objective Function X
X
Objective Function with Slack Variables Objective Function with Slack Variables X X S S
Flair Furniture’s Initial Simplex Flair Furniture’s Initial Simplex
Tableau
Tableau
Profit Real Slack per
Production Constant Variables Variables
Unit Mix Column Columns Columns
Column Column Profit per
C j
$7 $5 $0 $0
unit row Solution
X 1 X S S Quantity 2 1 2 Mix Constraint
$0 S 1
2
1 1 100
equation rows
$0 S 2
4
3 1 240
Gross
$0 $0 $0 $0 $0
profit row Z j
Net C - Z $7 $5 $0 $0 $0 j j
Pivot Row, Pivot Number Identified
Pivot Row, Pivot Number Identified
in the Initial Simplex Tableau
in the Initial Simplex TableauC j Solution Mix
X 1 X 2 S 1 S 2 Quantity
$7 $5 $0 $0
2
1
1
4
3
$0 1 $0 $0 $0 $0 $7 $5 $0 $0 $0
S 1 S 2 Z j C j - Z j
100 240 $0 $0
Pivot row Pivot number Pivot column
Completed Second Simplex Tableau
Completed Second Simplex Tableau
for Flair Furniture
for Flair FurnitureC j Solution Mix
X 1 X 2 S 1 S 2 Quantity
$7 $5 $0 $0 1 1/2 1/2 1 -2
$0 1 $7 $7/2 $7/2 $0 $0 $3/2 -$7/2 $0 $7
X 1 S 2 Z j C j - Z j
50
40 $350
Pivot Row, Column, and Number
Pivot Row, Column, and Number
Identified in Second Simplex Tableau
Identified in Second Simplex Tableau
C j Solution Mix
X 1 X 2 S 1 S 2 Quantity
$7 $5 $0 $0 1 1/2 1/2 1 -2
$0 1 $7 $7/2 $7/2 $0 $0 $3/2 -$7/2 $0 $7
X 1 S 2 Z j C j - Z j
50
40 $350 (Total Profit)
Pivot row Pivot number Pivot column
Calculating the New Calculating the New
( )
1 1/2 1/2
30
1 3/2 -1/2
= - x = - x
( )
Corresponding number in new X 2 row
( )
Number above pivot number
row
X
X 1
Number in old
)
row
X 1
Number in new
1 Row Row for Flair’s Third Tableau for Flair’s Third Tableau (
1
X
50 (1/2) (1/2) (1/2) (1/2) (1/2) (0) (1) (-2) (1) (40) = - x = - x = - x = - x
Final Simplex Tableau for
Final Simplex Tableau for
the Flair Furniture Problem
the Flair Furniture Problem
C j Solution Mix
X 1 X 2 S 1 S 2 Quantity
$7 $5 $0 $0 1 3/2 -1/2 1 -2
$5 1 $7 5 $1/2 $3/2 $0 $0 -$1/2 -$3/2 $7
X 1 X 2 Z j C j - Z j
30
40 $410
Simplex Steps for Simplex Steps for
Maximization
Maximization
1. Choose the variable with the greatest positive C j - Z j to enter the solution.
2. Determine the row to be replaced by selecting that one with the smallest (non-negative) quantity-to-pivot-column ratio.
3. Calculate the new values for the pivot row.
4. Calculate the new values for the other row(s).
5. Calculate the C j and C j - Z j values for this tableau. If there are any C j - Z j values greater than zero, return to Step 1.
Surplus & Artificial Variables Surplus & Artificial Variables Constraints Constraints
X Constraints-Surplus & Artificial Variables Constraints-Surplus & Artificial Variables Objective Function Objective Function
X : Min
X X
MA MA S
: Min
X
X X
X X
X X A S
A
X
X X
X X
Objective Function-Surplus & Artificial Variables
Objective Function-Surplus & Artificial Variables
Simplex Steps for
Simplex Steps for
Minimization
Minimization
1. Choose the variable with the greatest negative C - Z to j j enter the solution.
2. Determine the row to be replaced by selecting that one with the smallest (non-negative) quantity-to-pivot-column ratio.
3. Calculate the new values for the pivot row.
4. Calculate the new values for the other row(s).
5. Calculate the C and C - Z values for this tableau. If there j j j are any C - Z values less than zero, return to Step 1. j j
5 X
1 2 -2 100 M A
Infeasibility Infeasibility C j 5 8 0 M M Solution Mix
X
1 X
2 S
1 S
2 A
1 A
2 Qty
Special Cases Special Cases
1 1 0 -2 3 -1 200
8 X
2
1
2
1
20 Z j 5 8 -2 31-M -21-M M 1800+20M C j -Z j
2 M-31 2M+21
Special Cases
Special Cases
C j
6
9 Solution Mix
X
1 X
2
S1 S
2 Qty
Unboundedness
Unboundedness
9 X
30 S
2 -2 -1
1
10 Z j -9
9 18 270 C j -Z j 15 -18 Pivot Column
2
2 -1
1
Special Cases Special Cases
Degeneracy Degeneracy C
5
8
2 j Solution
X X
X S S S Qty
1
2
3
1
2
3 Mix
8 X 1/4
1 1 -2
10
2 S 4 1/3 -1
1
20
2 S
2 2 2/5
1
10
3 Z
2
8
8
16
80 j C -Z
3
6
16 j j Pivot Column
1 X
2 X
1
12 C j -Z j
2
2
3
3 Z j
1
2 1 1/2
6 S
1
Special Cases
Special Cases
2 3/2
2 Qty
1 S
2 S
X
2
Solution Mix3
C j
Multiple Optima
Multiple Optima
Sensitivity Analysis
Sensitivity Analysis
High Note Sound Company
High Note Sound Company
X X
X X
X X : to Subject : Max
Sensitivity Analysis
Sensitivity Analysis
High Note Sound Company
High Note Sound Company
Simplex Solution
Simplex Solution
High Note Sound Company
High Note Sound Company
C j 50 120 Solution Mix
X
1 X
2
S1 S
2 Qty 120
X
2 1/2 1 ¼
20 S
2 5/2 -1/4
1
40 Z j 60 120 30 2400 C j -Z j
Simplex Solution
Simplex Solution
High Note Sound Company
High Note Sound Company
C j 50 120 Solution Mix
X
1 X
2
S1 S
2 Qty 120
X
2 1/2 1 ¼
20 S
2
5/2 -1/4
1
40 Z j 60 120 30 2400 C j -Z j
Nonbasic Objective Function Nonbasic Objective Function
Coefficients
Coefficients
C j 50 120 Solution Mix
X
1 X
2 S
1 S
2 Qty 120
X
2 1/2 1 ¼
20 S
2
5/2 -1/4
1
40 Z j 60 120 30 2400 C j -Z j
Basic Objective Function Basic Objective Function
Coefficients Coefficients C j 50 120 Solution Mix
X
1 X
2 S
1 S
2 Qty 120+
X
2 1/2 1 ¼ 0
20 S
2 5/2 -1/4 1
40 Z j 60+1/2 120+ 30+1/4 0 2400+20
C j -Z j -10-1/2
0 -30-1/4 0
Simplex Solution
Simplex Solution
High Note Sound Company
High Note Sound Company
C j 50 120 Solution Mix
X
1 X
2
S1 S
2 Qty 120
X
2 1/2 1 ¼
20 S
2 5/2 -1/4
1
40 Z j 60 120 30 2400 C j -Z j
Steps to Form the Dual
Steps to Form the Dual To form the Dual: If the primal is max., the dual is min., and vice versa.
The right-hand-side values of the primal constraints become the objective coefficients of the dual.
The primal objective function coefficients become
the right-hand-side of the dual constraints. The transpose of the primal constraint coefficients become the dual constraint coefficients.
Constraint inequality signs are reversed.
Primal & Dual Primal & Dual
X X
X X
X X : to Subject : Max Primal: Primal:
Dual Dual
U U U U U U
: to Subject : Min
40 M M-40
$7 $5 U 1 S 1 Z j C j - Z j
20 A 1 A 2 M M 1/2 -1 1/2
40
80
20 -20$0
80
60 $0 $0 1 1/4 -1/4
X
1 X 2 S 1 S 210 $2,400
30
C j Solution Mix Quantity
Comparison of the Primal and Comparison of the Primal and Dual Optimal Tableaus Dual Optimal Tableaus u al ’s O pt im al S ol u ti on
30 -10 -30 P ri m al ’s O pt im al S ol u tio n
1/2
1 1/4 5/2 -1/4 1 60 120
X
1 X 2 S 1 S 2 $50 $120 $0 $040 $2,400
20
X 2 S 2 Z j C j - Z j
$7 $5
C j Solution Mix Quantity