Analisa Efisiensi Kipas dan Simulasi Kecepatan Hidrogen di Dalam Micro Channel Sel Bahan Bakar (Fuel Cell) Polymer Electrolyte Membrane Kapasitas 20W

  

LAMPIRAN A

  33.65 05/25/2012 12:11:15:334

  32.58 05/25/2012 11:55:15:320

  32.70 05/25/2012 11:57:15:343

  32.88 05/25/2012 11:59:15:339

  33.05 05/25/2012 12:01:15:306

  33.11 05/25/2012 12:03:15:337

  33.29 05/25/2012 12:05:15:290

  33.36 05/25/2012 12:07:15:311

  33.49 05/25/2012 12:09:15:292

  33.81 05/25/2012 12:13:15:300

  32.20 05/25/2012 11:51:15:337

  33.89 05/25/2012 12:15:15:346

  33.89 05/25/2012 12:17:15:329

  33.98 05/25/2012 12:19:15:348

  34.11 05/25/2012 12:21:15:333

  34.24 05/25/2012 12:23:15:301

  34.41 05/25/2012 12:25:15:291

  34.51 05/25/2012 12:27:15:341

  34.53 05/25/2012 12:29:15:316

  32.41 05/25/2012 11:53:15:290

  32.02 05/25/2012 11:49:15:290

  Suhu air pada saat hidrolisa aquadest menjadi hidrogen murni tanggal 25 Mei Time Suhu Air(

  28.46 05/25/2012 11:25:15:332

  o

  C) 05/25/2012 11:11:15:305

  27.92 05/25/2012 11:13:15:300

  27.79 05/25/2012 11:15:15:335

  27.76 05/25/2012 11:17:15:290

  27.73 05/25/2012 11:19:15:328

  27.76 05/25/2012 11:21:15:306

  27.77 05/25/2012 11:23:15:330

  29.09 05/25/2012 11:27:15:322

  31.81 05/25/2012 11:47:15:324

  29.39 05/25/2012 11:29:15:290

  29.59 05/25/2012 11:31:15:298

  29.92 05/25/2012 11:33:15:290

  30.28 05/25/2012 11:35:15:305

  30.51 05/25/2012 11:37:15:319

  30.84 05/25/2012 11:39:15:320

  31.19 05/25/2012 11:41:15:312

  31.42 05/25/2012 11:43:15:328

  31.60 05/25/2012 11:45:15:290

  34.72

  05/25/2012 12:31:15:340

  34.39 05/25/2012 13:25:15:327

  34.76 05/25/2012 13:13:15:292

  34.53 05/25/2012 13:15:15:338

  34.57 05/25/2012 13:17:15:290

  34.56 05/25/2012 13:19:15:290

  34.48 05/25/2012 13:21:15:346

  34.41 05/25/2012 13:23:15:327

  34.26 05/25/2012 13:27:15:323

  35.02 05/25/2012 13:09:15:348

  34.25 05/25/2012 13:29:15:334

  34.18 05/25/2012 13:31:15:311

  34.07 05/25/2012 13:33:15:290

  34.05 05/25/2012 13:35:15:329

  34.00 05/25/2012 13:37:15:311

  33.88 05/25/2012 13:39:15:334

  34.86 05/25/2012 13:11:15:318

  35.08 05/25/2012 13:07:15:323

  34.81 05/25/2012 12:33:15:302

  35.33 05/25/2012 12:47:15:343

  34.81 05/25/2012 12:35:15:322

  34.96 05/25/2012 12:37:15:328

  35.12 05/25/2012 12:39:15:322

  35.15 05/25/2012 12:41:15:347

  35.22 05/25/2012 12:43:15:297

  35.26 05/25/2012 12:45:15:347

  35.50 05/25/2012 12:49:15:309

  35.24 05/25/2012 13:05:15:292

  35.67 05/25/2012 12:51:15:323

  35.48 05/25/2012 12:53:15:294

  35.79 05/25/2012 12:55:15:334

  36.24 05/25/2012 12:57:15:306

  35.94 05/25/2012 12:59:15:290

  35.70 05/25/2012 13:01:15:330

  35.41 05/25/2012 13:03:15:302

  33.62

  

LAMPIRAN B

  19.80

  20.53

  31.95 05/26/2012 14:07:05:685

  31.78

  20.31

  31.95 05/26/2012 14:06:35:709

  31.71

  20.20

  31.83 05/26/2012 14:06:05:728

  31.57

  20.06

  31.92 05/26/2012 14:05:35:725

  31.59

  31.76 05/26/2012 14:05:05:685

  31.91 05/26/2012 14:07:35:685

  31.40

  19.65

  31.66 05/26/2012 14:04:35:685

  31.35

  19.47

  31.64 05/26/2012 14:04:05:689

  31.39

  19.17

  31.66 05/26/2012 14:03:35:720

  31.17

  18.99

  31.60 05/26/2012 14:03:05:685

  31.67

  20.77

  18.73

  31.80

  31.98

  23.67

  32.46 05/26/2012 14:12:05:704

  31.86

  23.87

  32.39 05/26/2012 14:11:35:727

  32.16

  22.83

  32.28 05/26/2012 14:11:05:695

  32.07

  22.48

  32.20 05/26/2012 14:10:35:719

  22.11

  31.77

  32.17 05/26/2012 14:10:05:695

  31.86

  21.93

  32.04 05/26/2012 14:09:35:701

  31.69

  21.74

  31.91 05/26/2012 14:09:05:721

  31.64

  21.42

  31.76 05/26/2012 14:08:35:701

  31.54

  21.25

  32.01 05/26/2012 14:08:05:719

  31.19

  31.46 05/26/2012 14:02:35:691

  Suhu hydrostick, stack inlet, dan stack outlet pengoperasian tanggal 26 Mei 2012 Time Hidrostik (

  29.57 05/26/2012 13:55:05:687

  30.25 05/26/2012 13:57:05:685

  30.04

  18.71

  30.01 05/26/2012 13:56:35:685

  29.87

  19.37

  29.72 05/26/2012 13:56:05:720

  29.70

  20.26

  29.63 05/26/2012 13:55:35:691

  29.51

  21.84

  29.37

  30.23

  24.36

  29.42 05/26/2012 13:54:35:711

  29.48

  28.42

  29.60 05/26/2012 13:54:05:685

  29.69

  31.71

  C) 05/26/2012 13:53:35:700

  o

  C) Outlet(

  o

  C) Inlet(

  o

  18.35

  30.48 05/26/2012 13:57:35:730

  31.22

  18.12

  18.61

  31.39 05/26/2012 14:02:05:711

  31.01

  18.71

  31.32 05/26/2012 14:01:35:719

  30.89

  18.46

  31.30 05/26/2012 14:01:05:696

  30.94

  18.21

  31.16 05/26/2012 14:00:35:700

  30.70

  31.01 05/26/2012 14:00:05:698

  18.03

  30.69

  17.96

  31.02 05/26/2012 13:59:35:716

  30.67

  17.83

  30.95 05/26/2012 13:59:05:685

  30.64

  17.73

  30.70 05/26/2012 13:58:35:706

  30.58

  17.82

  30.50 05/26/2012 13:58:05:724

  30.42

  32.42

  

LAMPIRAN C

  34.45 05/29/2012 14:43:43:047

  33.91 05/29/2012 14:35:43:049

  33.91 05/29/2012 14:36:43:054

  34.05 05/29/2012 14:37:43:047

  34.19 05/29/2012 14:38:43:047

  34.22 05/29/2012 14:39:43:104

  34.28 05/29/2012 14:40:43:088

  34.34 05/29/2012 14:41:43:074

  34.42 05/29/2012 14:42:43:066

  34.52 05/29/2012 14:44:43:101

  33.80 05/29/2012 14:33:43:072

  34.58 05/29/2012 14:45:43:094

  34.63 05/29/2012 14:46:43:086

  34.58 05/29/2012 14:47:43:063

  34.64 05/29/2012 14:48:43:103

  34.78 05/29/2012 14:49:43:093

  34.87 05/29/2012 14:50:43:085

  34.88 05/29/2012 14:51:43:075

  34.95 05/29/2012 14:52:43:064

  33.83 05/29/2012 14:34:43:055

  33.73 05/29/2012 14:32:43:104

  Suhu air pada saat hidrolisa aquadest menjadi hidrogen murni tanggal 29 Mei 2012

  32.65 05/29/2012 14:20:43:094

  Time Suhu Air (

  o

  C) 05/29/2012 14:14:43:062

  32.72 05/29/2012 14:15:43:059

  32.87 05/29/2012 14:16:43:100

  32.83 05/29/2012 14:17:43:084

  32.77 05/29/2012 14:18:43:067

  32.73 05/29/2012 14:19:43:056

  32.72 05/29/2012 14:21:43:084

  33.67 05/29/2012 14:31:43:047

  32.85 05/29/2012 14:22:43:080

  32.80 05/29/2012 14:23:43:066

  32.94 05/29/2012 14:24:43:078

  33.09 05/29/2012 14:25:43:103

  33.22 05/29/2012 14:26:43:089

  33.30 05/29/2012 14:27:43:080

  33.37 05/29/2012 14:28:43:084

  33.45 05/29/2012 14:29:43:064

  33.57 05/29/2012 14:30:43:055

  34.97

  05/29/2012 14:53:43:047

  35.04 05/29/2012 14:54:43:101

  35.07 05/29/2012 14:55:43:047

  35.15 05/29/2012 14:56:43:088

  35.18 05/29/2012 14:57:43:065

  35.30 05/29/2012 14:58:43:058

  35.35 05/29/2012 14:59:43:054

  35.16 05/29/2012 15:00:43:062

  35.16 05/29/2012 15:01:43:057

  35.01 05/29/2012 15:02:43:060

  35.02 05/29/2012 15:03:43:059

  34.96 05/29/2012 15:04:43:047

  34.89 05/29/2012 15:05:43:091

  34.74 05/29/2012 15:06:43:060

  34.80 05/29/2012 15:07:43:047

  34.80

  

LAMPIRAN D

  19.70

  19.99

  30.40

  30.43 05/30/2012 12:28:29:010

  19.77

  30.58

  30.78 05/30/2012 12:29:29:011

  19.60

  30.69

  30.89 05/30/2012 12:30:29:009

  30.80

  30.14

  31.06 05/30/2012 12:31:28:998

  24.63

  30.71

  31.08 05/30/2012 12:32:28:988

  27.55

  30.75

  31.07 05/30/2012 12:33:28:988

  28.00

  30.78

  30.20 05/30/2012 12:27:29:017

  21.06

  Suhu hydrostick, stack inlet, dan stack outlet pengoperasian tanggal 30 Mei 2012 Time hidrostik(

  25.33

  o

  C) input(

  o

  C) output(

  o

  C) 05/30/2012 12:21:28:976

  31.77

  28.04

  28.03 05/30/2012 12:22:28:974

  28.30

  29.67 05/30/2012 12:26:28:991

  28.19 05/30/2012 12:23:28:961

  21.40

  28.63

  28.56 05/30/2012 12:24:28:960

  21.14

  29.03

  28.97 05/30/2012 12:25:29:011

  21.54

  29.48

  30.96

  

LAMPIRAN E

  Perintah - perintah untuk penyelesaian permasalahan permodelan microchannel dua fasa

  % Modeling the Two-Phase Pressure Drop in Microchannels % UnitSystem SI % inputs % Pressure drop analysis for microchannels

  D_chan = 0.001 55; % Channel diameter (m) D_bipolar = 0.000 1; % Bipolar channel diameter m = 2.18e-4; % Mass fl ow rate (kg/s) x = 0.80; % Quality pv = 100; % Vapor density (kg/m^3) pl = 1000; % Liquid density (kg/m^3) mul = 1.2e-4; % Liquid viscosity (kg/ms) muv = 1.4e-5; % Vapor viscosity (kg/ms) sigma = 3.6e-3; % (N/m) A = 1.308e-3; a = 0.4273; b = 0.9295; c = -0.1211; L_chan = 0.01; % Channel Length (10 mm) kb = 0.6; psi = 7.5;

  % Calculate the area of the inlet channels

  A_chan = pi * ((D_chan/2)^2) G_chan = m / A_chan

  % Frictional pressure drop in channel from inlet to the bipolar channel % entrance % Void fraction

  alpha = (1 + (((1 - x) / x)^ 0.74) * ((pv/pl)^0.65) * (mul/muv)^0.13)^(-1)

  % Liquid Reynold’s number

  Re_l = (G_chan * D_chan * (1 - x))/ ((1+ sqrt(alpha)) * mul)

  % Vapor Reynold’s number

  Re_v = (G_chan * D_chan * x)/ (sqrt(alpha) * muv);

  % Friction factor for laminar fi lm

  f_l = 64/Re_l

  % Vapor friction factor

  f_v = 0.316 * Re_v^(-0.25)

  % Annular flow model

  dPdz_l = (f_l * G_chan^2 * (1 − x)^2)/(2 * D_chan * pl); %Pa/m dPdz_v = (f_v * G_chan^2 * x^2)/(2 * D_chan * pv); %Pa/m

  % Martinelli parameter

  Xm = (dPdz_l/dPdz_v)^0.5; j_l = (G_chan * (1-x))/(pl * (1-alpha)); %m/s phi = (j_l * mul)/sigma; f_i = A * (Xm^a) * (Re_l^b) * (phi^c) * f_l; % For laminar region deltaP_chan = 0.5 * f_i * G_chan^2/pv * (x^2)/(alpha^2.5) * (1/D_chan) * L_chan; % Pa

  % Calculate the area of the bipolar channels

  A_bipolar = pi * (D_bipolar/2)^2; G_bipolar = m / (pi * D_chan * D_bipolar);

  % Bend pressure drop from flow channel to bipolar channel entrance % Homogenous flow model

  deltaP_bend_in = kb * ((G_bipolar^2)/(2 * pl)) * psi; % Pa

  % Contraction pressure drop from the flow channel to bipolar channel entrance

  gamma_con = A_chan/A_bipolar Cc = 1/(0.639 * ((1-(1/gamma_con))^0.5)+1)

  % Homogenous flow model

  deltaP_con_in =((G_bipolar^2)/(2 * pl)) * ((((1/Cc)-1)^2) + 1 -(1 / gamma_con^2)) * psi; % Pa

  % Deceleration pressure gain in channels

  x_in = 0.80; % Quality in pl_in = 1000; % Liquid density in mul_in=1.2e-4; % Liquid viscosity in pv_in = 100; % Vapor density in muv_in = 1.4e-5; % Vapor viscosity in pl_out = 1075; % Liquid density out mul_out = 1.24e-4; % Liquid viscosity out pv_out = 95; % Vapor density out muv_out = 1.4e-5; % Vapor viscosity out x_out = 0.70; % Quality out G = 550; alphax_in = (1+ (((1-x_in)/x_in)^0.74) * ((pv_in/pl_in)^0.65) * ((mul_in/muv_ in)^0.13))^(-1); alphax_out=(1+(((1-x_out)/x_out)^0.74)*((pv_out/pl_out)^0.65)* (mul_out/muv_out)^0.13))^(-1); deltaP_decel = (((G^2) * (x_in^2)/(pv_in * alphax_in))+ ((G^2) * (1- x_in)^2)/(pl_in * (1- alphax_in)))- (((G^2) * (x_out^2)/(pv_out *alphax_out))+ ((G^2) * (1-x_out)^2)/ (pl_out * (1-alphax_out)));

  % Frictional pressure drop in bipolar channels

  L_bipolar_hor = 0.0075 * 6; % horizontal length x number of channels L_bipolar_vert = 0.0015 * 5; % vertical length x number of u bends

  % Void fraction

  alpha_bipolar = (1 + (((1 − x) / x)^ 0.74) * ((pv/pl)^0.65) * (mul/muv)^0.13)^(-1);

  % Liquid Reynold’s number

  Re_l = (G_bipolar * D_bipolar * (1 − x))/ ((1+ sqrt(alpha_bipolar)) * mul);

  % Vapor Reynold’s number

  Re_v = (G_bipolar * D_bipolar * x)/ (sqrt(alpha_bipolar) * muv);

  % Friction factor for laminar fi lm

  f_l = 64/Re_l;

  % Vapor friction factor

  f_v = 0.316 * Re_v^(-0.25);

  % Annular fl ow model dPdz_l = (f %Pa/m

  _l * G_bipolar^2 * (1 − x)^2)/(2 * D_bipolar * pl); dPdz_v = (f_v * G_bipolar^2 * x^2)/(2 * D_bipolar * pv); %Pa/m

  % Martinelli parameter

  Xm = (dPdz_l/dPdz_v)^0.5; j_l = (G_bipolar * (1-x))/(pl * (1-alpha_bipolar)); %m/s phi = (j_l * mul)/sigma; f_i = A * (Xm^a) * (Re_l^b) * (phi^c) * f_l; % For laminar region deltaP_bipolar_hor = 0.5 * f_i * G_bipolar^2/pv * (x^2)/(alpha_bipolar^2.5) * (1/D_bipolar) * L_bipolar_hor; % Pa deltaP_bipolar_vert = 0.5 * f_i * G_bipolar^2/pv * (x^2)/(alpha_bipolar^2.5) * (1/D_bipolar) * L_bipolar_vert; % Pa

  % Bend pressure drop in bipolar channel bends

  bends = 10; % “L” bends

  % Homogenous fl ow model

  deltaP_bend_bipolar = kb * ((G_bipolar^2)/(2 * pl)) * psi * bends; % Pa

  % Net frictional pressure drop in channels

  deltaP = deltaP_chan + deltaP_bend_in + deltaP_con_in + deltaP_decel + deltaP_ bipolar_hor +deltaP_bipolar_vert + deltaP_bend_bipolar; % Pa

  % Convert to bar

  deltaP = deltaP * 1e-5

  

LAMPIRAN F

  Perintah - perintah untuk penyelesaian permasalahan permodelan stack sel bahan bakar

  % Designing the Fuel Cell Stack % UnitSystem SI % Inputs

  Power = 20; % Required stack power (W) Voltage = 10; % Stack Voltage (V) V_cell = 0.769; % Cell voltage i = 0.5; % Current Density (A/cm^2)

  % Calculate the required stack current

  I = Power / Voltage; % The current is the power divided by the voltage

  % Assume that the fuel cell voltage is 0.769 V per cell

  N_cells = Voltage/V_cell;

  % Assume the current density is 0.5 A/cm^2, therefore, the current needed per cell is

  i_cell = I/N_cells;

  % The area required per cell is

  A_cell = i_cell/i; % cm^2

  

LAMPIRAN G

  Perintah - perintah untuk penyelesaian efisiensi kipas pada sel bahan bakar

  % Calculate the Fan Efficiency % UnitSystem SI % Inputs

  T = 298; % Operating temperature (K) P = 100; % Operating pressure (kPa) PBoost = 0.6; % PBoost: the boost in the pressure air = 0.02; % air moved actualpower = 0.02; % the actual power generated (kW) cp = 1.005; % Specific heat gamma = 1.38; R = 0.286;

  % Calculate the exit temperature from isentropic ratio

  T2 = T ((P + PBoost)/P).^((gamma- 1)/gamma); % Ideal work (kJ/kg)

  W_ideal = cp (T2 − T)

  % Mass flow rate (kg/s)

  m = air / (R T / P)

  % Fan Efficiency

  etha = W_ideal / (actualpower / m)

  

LAMPIRAN H

  Perintah - perintah untuk penyelesaian permasalahan permodelan kompresor udara untuk sel bahan bakar

  % Designing an Air Compressor % UnitSystem SI % Inputs

  T = 298; % Operating temperature (K) P = 100; % Operating pressure (kPa) PBoost = 100; % PBoost: the boost in the pressure eta = 0.75; % Effi ciency m_air = 2; % Mass fl ow rate (kg/s) gamma = 1.38; cp = 1.005; % Specifi c heat R = 0.286; % Ideal gas constant

  % Calculate volume using the ideal gas law

  v1 = R

  % Calculate volumetric flow rate (m3/s)

  V1 = v1 m_air

  % Ideal exit temperature

  T_exit_ideal = T * ((P + PBoost)/P)^((gamma- 1)/gamma)

  % Ideal work

  W_ideal = cp * (T_exit_ideal − T)* m_air

  % Actual work

  W_actual = W_ideal / eta

  % Actual exit temperature

  T_exit_actual = T + W_actual/ (cp * m_air)

Dokumen yang terkait

Pengendalian Intern, Moralitas Manajemen dan Sistem Kompensasi terhadap Perilaku Etis Karyawan dalam Sistem Penggajian di Kantor Bupati Labuhanbatu Selatan dan Kantor Bupati Padang Lawas Utara

0 1 28

BAB II TINJAUAN PUSTAKA A. Tinjauan Teoritis 2.1. Pasar Modal - Pengaruh Pemecahan Saham (Stock Split) Terhadap Harga Saham dan Volume Perdagangan Saham pada Perusahaan Go Public yang Terdaftar di BEI Tahun 2006 – 2011

0 0 11

BAB II TINJAUAN PUSTAKA - Efektivitas Pelayanan Sosial Anak di Bidang Pendidikan di Panti Asuhan Yayasan Amal-Sosial Al-Washliyah Kelurahan Gedung Johor Kecamatan Medan Johor

0 0 16

BAB I PENDAHULUAN - Efektivitas Pelayanan Sosial Anak di Bidang Pendidikan di Panti Asuhan Yayasan Amal-Sosial Al-Washliyah Kelurahan Gedung Johor Kecamatan Medan Johor

0 0 9

BAB II TINJAUAN PUSTAKA - Pra Rancangan Pabrik Pembuatan Kaprolaktam dengan Proses Sosieta Nasionale Industri Applicazioni – Viscosa dari Toluena dengan Kapasitas 50.000 Ton/Tahun

0 1 17

BAB II PT TASPEN (PERSERO) KANTOR CABANG UTAMA MEDAN A. Sejarah Singkat - Pengendalian Internal Gaji dan Upah pada PT. Taspen (Persero) Kantor Cabang Utama Medan

0 4 16

Pertumbuhan dan Hasil Tiga Klon Ubi Jalar Pada Jarak Tanam Yang Berbeda

0 0 14

BAB II PROFIL PT. PEGADAIAN (PERSERO) KANWIL I MEDAN A. Sejarah Ringkas Perusahaan PT. Pegadaian (Persero) Kanwil I Medan - Sistem Pengendalian Internal Gaji dan Upah Pada PT. Pegadaian (Persero) Kanwil I Medan

0 6 18

Daya Tahan dan Uji Organoleptik Terhadap Dadih dan Yoghurt dari Susu Kerbau Murrah di Kecamatan Siborongborong Kabupaten Tapanuli Utara

0 0 13

Daya Tahan dan Uji Organoleptik Terhadap Dadih dan Yoghurt dari Susu Kerbau Murrah di Kecamatan Siborongborong Kabupaten Tapanuli Utara

0 0 14