Simbol matematika dasar
Simbol matematika dasar
Nama
Simbol
Dibaca sebagai
Penjelasan
Contoh
Kategori
Kesamaan
=
sama dengan
x = y berarti x and y mewakili
hal atau nilai yang sama.
1+1=2
umum
Ketidaksamaan
≠
x ≠ y berarti x dan y tidak
tidak sama dengan mewakili hal atau nilai yang
1≠2
sama.
umum
Ketidaksamaan
<
x < y berarti x lebih kecil dari y.
lebih kecil dari;
>
lebih besar dari
3 y means x lebih besar
5>4
dari y.
order theory
≤
Ketidaksamaan
x ≤ y berarti x lebih kecil dari
3 ≤ 4 and 5 ≤ 5
lebih kecil dari atau
sama dengan,
lebih besar dari
≥
atau sama dengan
atau sama dengan y.
x ≥ y berarti x lebih besar dari
5 ≥ 4 and 5 ≥ 5
atau sama dengan y.
order theory
Perjumlahan
tambah
4 + 6 berarti jumlah antara 4
dan 6.
2+7=9
aritmatika
+
disjoint union
the disjoint union
of … and …
A1 + A2 means the disjoint
union of sets A1 and A2.
A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2),
(5,2), (7,2)}
teori himpunan
−
Perkurangan
kurang
9 − 4 berarti 9 dikurangi 4.
8−3=5
aritmatika
tanda negatif
negatif
−3 berarti negatif dari angka 3. −(−5) = 5
aritmatika
set-theoretic
complement
A − B berarti himpunan yang
mempunyai semua anggota
minus; without
dari Ayang tidak terdapat
{1,2,4} − {1,3,4} = {2}
pada B.
set theory
multiplication
kali
3 × 4 berarti perkalian 3 oleh
4.
7 × 8 = 56
aritmatika
×
Cartesian product
X×Y means the set of
the Cartesian
all ordered pairs with the first
product of … and
element of each pair selected
…; the direct
product of … and
{1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
from X and the second
element selected from Y.
…
teori himpunan
cross product
cross
u × v means the cross
(1,2,5) × (3,4,−1) =
product of vectors u and v
(−22, 16, − 2)
6 ÷ 3 atau 6/3 berati 6 dibagi
2 ÷ 4 = .5
vector algebra
÷
division
bagi
3.
aritmatika
12/4 = 3
square root
akar kuadrat
√x berarti bilangan positif yang
kuadratnya x.
√4 = 2
bilangan real
√
complex square
root
the complex
square root of;
square root
if z = r exp(iφ) is represented
in polar coordinates with -π <
√(-1) = i
φ ≤ π, then √z = √r exp(iφ/2).
Bilangan kompleks
absolute value
||
nilai mutlak dari
numbers
|x| means the distance in
the real line (or the complex
plane) between x and zero.
|3| = 3, |-5| = |5|
|i| = 1, |3+4i| = 5
factorial
!
faktorial
n! adalah hasil dari 1×2×...×n.
4! = 1 × 2 × 3 × 4 = 24
combinatorics
probability
distribution
~
has distribution;
tidk terhingga
X ~ D, means the random
variable X has the probability
X ~ N(0,1), the standard normal distribution
distribution D.
statistika
material implication A ⇒ B means if A is true
⇒
implies; if .. then
then nothing is said about B.
→ may mean the same as ⇒,
→
or it may have the meaning
propositional logic
⊃
then B is also true; if A is false
forfunctions given below.
⊃ may mean the same as ⇒,
or it may have the meaning
forsuperset given below.
x = 2 ⇒ x2 = 4 is true, but x2 = 4 ⇒ x= 2 is in
general false (since x could be −2).
⇔
material
equivalence
if and only if; iff
↔
A ⇔ B means A is true if B is
true and A is false if B is false.
x + 5 = y +2 ⇔ x + 3 = y
propositional logic
logical negation
¬
not
The statement ¬A is true if and
only if A is false.
¬(¬A) ⇔ A
A slash placed through
˜
x ≠ y ⇔ ¬(x = y)
propositional logic another operator is the same
as "¬" placed in front.
logical
conjunction or mee
t in alattice
∧
and
The statement A ∧ B is true
if A and B are both true; else it
is false.
n < 4 ∧ n >2 ⇔ n = 3 when n is anatural
number.
propositional
logic, lattice theory
logical
disjunction or join i
n alattice
∨
n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 when n is anatural number.
The statement A ∨ B is true
if A or B (or both) are true; if
propositional both are false, the statement is \
logic, lattice theory false.
The
statement A ⊕
⊕
xor
B is true when
proposition
either A or B,
al
but not both,
logic, Bool
ean
algebra
⊻
are
true. A ⊻ B me
||exclusive or
ans the same.
universal
quantification
∀
for all; for any; for
each
∀ x: P(x) means P(x) is true for
all x.
∀ n ∈ N: n2 ≥ n.
predicate logic
∃
existential
∃ x: P(x) means there is at
quantification
least one x such that P(x) is
there exists
true.
∃ n ∈ N: n is even.
(¬A)
⊕ A is
always
true, A ⊕
A is
always
false.
predicate logic
uniqueness
quantification
∃!
∃! x: P(x) means there is
there exists exactly exactly one x such that P(x) is
one
∃! n ∈ N: n + 5 = 2n.
true.
predicate logic
:=
definition
x := y or x ≡ y means x is
is defined as
≡
defined to be another name
for y (but note that ≡ can also
mean other things, such
as congruence).
everywhere
:⇔
P :⇔ Q means P is defined to
cosh x := (1/2)
(exp x + exp (−x))
A XOR B :⇔
(A ∨ B) ∧ ¬(A ∧ B)
be logically equivalent to Q.
set brackets
{,}
the set of ...
{a,b,c} means the set
consisting of a, b, and c.
N = {0,1,2,...}
teori himpunan
{:}
set builder notation
the set of ... such
{|}
that ...
teori himpunan
{x : P(x)} means the set of
all x for which P(x) is true.
{n ∈ N : n2 < 20} =
{x | P(x)} is the same as
{0,1,2,3,4}
{x : P(x)}.
himpunan kosong
∅
{}
∈
himpunan kosong
teori himpunan
memiliki elemen. {} juga berarti
hal yang sama.
{n ∈ N : 1 < n2 <
4} = ∅
set membership
is an element of; is a ∈ S means a is an element
not an element of
∉
∅ berarti himpunan yang tidak
everywhere, teori
(1/2)−1 ∈ N
of the set S; a ∉ S means a is
not an element of S.
2−1 ∉ N
himpunan
⊆
subset
is a subset of
⊂
A ⊆ B means every element
of A is also element of B.
teori himpunan A ⊂ B means A ⊆ B but A ≠ B.
A ∩ B ⊆ A; Q ⊂ R
⊇
superset
A ⊇ B means every element
is a superset of
⊃
A ∪ B ⊇ B; R ⊃ Q
teori himpunan A ⊃ B means A ⊇ B but A ≠ B.
set-theoretic union
∪
of B is also element of A.
A ∪ B means the set that
the union of ...
contains all the elements
and ...; union
from A and also all those
teori himpunan
A⊆B ⇔ A∪B=B
from B, but no others.
set-theoretic
intersection
∩
A ∩ B means the set that
intersected with;
intersect
contains all those elements
that A andB have in common.
{x ∈ R : x2 =
1} ∩ N = {1}
teori himpunan
set-theoretic
\
complement
A \ B means the set that
minus; without
contains all those elements
of A that are not in B.
{1,2,3,4} \ {3,4,5,6} =
{1,2}
teori himpunan
function application
of
()
f(x) berarti nilai fungsi f pada
Jika f(x) := x2,
elemen x.
maka f(3) = 32 = 9.
Perform the operations inside
(8/4)/2 = 2/2 = 1, but
the parentheses first.
8/(4/2) = 8/2 = 4.
teori himpunan
precedence
grouping
umum
f:X→
Y
function arrow
from ... to
teori himpunan
f: X → Y means the
function f maps the set X into
the set Y.
Let f: Z → N be
defined by f(x) = x2.
function
composition
o
composed with
fog is the function, such that
(fog)(x) = f(g(x)).
if f(x) = 2x, and g(x)
= x + 3, then (fog)(x)
= 2(x + 3).
teori himpunan
Bilangan asli
N
N
N berarti {0,1,2,3,...}, but see
the article on natural numbers
{|a| : a ∈ Z} = N
Bilangan
for a different convention.
ℕ
Z
Bilangan bulat
Z berarti {...,
Z
−3,−2,−1,0,1,2,3,...}.
ℤ
{a : |a| ∈ N} = Z
Bilangan
Bilangan rasional
Q
3.14 ∈ Q
Q
ℚ
Q berarti {p/q : p,q ∈ Z, q ≠ 0}.
π∉Q
Bilangan
Bilangan real
R
R berarti {limn→∞ an :
R
ℝ
π∈R
∀ n ∈ N: an ∈ Q, the limit
Bilangan
exists}.
√(−1) ∉ R
C means {a + bi : a,b ∈ R}.
i = √(−1) ∈ C
Bilangan kompleks
C
C
ℂ
Bilangan
infinity
∞
∞ is an element of
infinity
numbers
pi
is greater than all real
Euclidean
geometry
norm
in limits.
antara
keliling lingkaran dengan
diameternya.
A = πr² adalah luas
lingkaran dengan
jari-jari (radius) r
||x|| is the norm of the
norm of; length of
linear algebra
element x of a normed vector
∑k=1n ak means a1 + a2 + ... + an
sum over ...
from ... to ... of
||x+y|| ≤ ||x|| + ||y||
space.
summation
∑
limx→0 1/|x| = ∞
numbers; it often occurs
π berarti perbandingan (rasio)
pi
π
|| ||
the extended number line that
.
∑k=14 k2 = 12 + 22 +
32 + 42 = 1 + 4 + 9 +
16 = 30
aritmatika
product
∏k=14 (k + 2) = (1 +
product over ...
from ... to ... of
∏k=1n ak means a1a2···an.
2) = 3 × 4 × 5 × 6 =
360
aritmatika
∏
2)(2 + 2)(3 + 2)(4 +
Cartesian product
the Cartesian
product of; the
direct product of
∏i=0nYi means the set of
all (n+1)-tuples (y0,...,yn).
∏n=13R = Rn
set theory
derivative
'
… prime;
derivative of …
f '(x) is the derivative of the
function f at the point x, i.e.,
theslope of the tangent there.
If f(x) = x2,
then f '(x) = 2x
kalkulus
indefinite
integral or antideriv
ative
indefinite integral
of …; the
∫ f(x) dx means a function
whose derivative is f.
∫x2 dx = x3/3 + C
antiderivative of …
∫
kalkulus
definite integral
∫ab f(x) dx means the
integral from ...
signed area between the x-
to ... of ... with
axis and thegraph of
respect to
kalkulus
∫0b x2 dx = b3/3;
the function f between x = a an
d x = b.
gradient
∇
del, nabla, gradient
of
∇f (x1, …, xn) is the vector of
partial derivatives (df / dx1,
…, df /dxn).
If f (x,y,z) = 3xy + z²
then ∇f = (3y, 3x, 2z)
kalkulus
∂
partial derivative
partial derivative of
With f (x1, …, xn), ∂f/∂xi is the
If f(x,y) = x2y, then
derivative of f with respect to
∂f/∂x = 2xy
xi, with all other variables kept
kalkulus constant.
boundary
boundary of
∂M means the boundary of M
∂{x : ||x|| ≤ 2} =
{x : || x || = 2}
topology
perpendicular
x ⊥ y means x is
is perpendicular to perpendicular to y; or more
⊥
geometri
generally x is orthogonal to y.
If l⊥m and m⊥n the
n l || n.
bottom element
the bottom element
x = ⊥ means x is the smallest
element.
∀x : x ∧ ⊥ = ⊥
lattice theory
A ⊧ B means the
entailment
|=
sentence A entails the
entails
sentence B, that is
model theory
A ⊧ A ∨ ¬A
everymodel in which A is
true, B is also true.
inference
infers or is derived
|-
x ⊢ y means y is derived
from
propositional
from x.
A → B ⊢ ¬B → ¬A
logic, predicate
logic
normal subgroup
◅
is a normal
N ◅ G means that N is a
subgroup of
normal subgroup of group G.
Z(G) ◅ G
group theory
quotient group
/
mod
group theory
G/H means the quotient of
group G modulo its
subgroup H.
isomorphism
≈
2a, b, b+a, b+2a} /
{0, b} = {{0, b},
{a, b+a}, {2a, b+2a}}
Q / {1, −1} ≈ V,
G ≈ H means that group G is
is isomorphic to
{0, a,
isomorphic to group H
where Q is
the quaternion
group and V is
the Klein four-group.
Istilah Matematika Dalam Bahasa Inggris
Berikut beberapa istilah-istilah matematika dalam bahasa Inggris.
Bilangan Bulat = Integers (Z)
Bilangan Asli = Natural number (N)
Bilangan Cacah = Whole number (W)
Bilangan Genap = Even number
Bilangan Ganjil = Odd number
Penjumlahan = Addition
Pengurangan = Subtraction
Pembagian = Divisio
Perkalian = Multiplication
Sifat asosiatif = Associative principle
Sifat komutatif = Commutative principle
Kelipatan persekutuan terkecil (KPK) = Least common multiple
Faktor persekutuan terbesar (FPB) = Greatest common divisor
Pecahan = fraction
Pecahan-pecahan yang senilai dan tidak senilai = Equality and inequality of
rational numbers
Pecahan campuran = Mixed rational number
Desimal = Decimals
Operasi bilangan desimal = The operations of decimals
Garis bilangan = The number line
Bentuk baku = Scientific notation
Pangkat bilangan = Powers of numbers
Bentuk aljabar = Algebraic forms
Aritmatika sosial = Social arithmetic
Persamaan linier = Linear equations
Variabel = Variable
Pertidaksamaan linier = Linear inequalities
Modulus (Pengayaan) = Enrichment
Perbandingan = Proportion
Pembilang= Numerator
Penyebut = Denominator
Perbandingan seharga = Direct proportion
Perbandingan berbalik harga = Inverse proportion
Garis = Lines
Sudut = Angles
Derajat = Degrees
Keliling = Circumference
Luas = Area
Sisi = Side
Sudut dalam = Interior angle
Himpunan = Sets
Himpunan semesta = Universal set
Gabungan himpunan = Union of sets
Irisan himpunan = Intersection of sets
Komplemen suatu himpunan = Complement of a set
Diagram Venn = Venn diagrams
Himpunan-himpunan yang sama = Equal sets
Himpunan-himpunan yang ekuivalen = Equivalent sets
Himpunan-himpunan yang saling lepas (Saling asing) = Disjoint sets
Nama
Simbol
Dibaca sebagai
Penjelasan
Contoh
Kategori
Kesamaan
=
sama dengan
x = y berarti x and y mewakili
hal atau nilai yang sama.
1+1=2
umum
Ketidaksamaan
≠
x ≠ y berarti x dan y tidak
tidak sama dengan mewakili hal atau nilai yang
1≠2
sama.
umum
Ketidaksamaan
<
x < y berarti x lebih kecil dari y.
lebih kecil dari;
>
lebih besar dari
3 y means x lebih besar
5>4
dari y.
order theory
≤
Ketidaksamaan
x ≤ y berarti x lebih kecil dari
3 ≤ 4 and 5 ≤ 5
lebih kecil dari atau
sama dengan,
lebih besar dari
≥
atau sama dengan
atau sama dengan y.
x ≥ y berarti x lebih besar dari
5 ≥ 4 and 5 ≥ 5
atau sama dengan y.
order theory
Perjumlahan
tambah
4 + 6 berarti jumlah antara 4
dan 6.
2+7=9
aritmatika
+
disjoint union
the disjoint union
of … and …
A1 + A2 means the disjoint
union of sets A1 and A2.
A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2),
(5,2), (7,2)}
teori himpunan
−
Perkurangan
kurang
9 − 4 berarti 9 dikurangi 4.
8−3=5
aritmatika
tanda negatif
negatif
−3 berarti negatif dari angka 3. −(−5) = 5
aritmatika
set-theoretic
complement
A − B berarti himpunan yang
mempunyai semua anggota
minus; without
dari Ayang tidak terdapat
{1,2,4} − {1,3,4} = {2}
pada B.
set theory
multiplication
kali
3 × 4 berarti perkalian 3 oleh
4.
7 × 8 = 56
aritmatika
×
Cartesian product
X×Y means the set of
the Cartesian
all ordered pairs with the first
product of … and
element of each pair selected
…; the direct
product of … and
{1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
from X and the second
element selected from Y.
…
teori himpunan
cross product
cross
u × v means the cross
(1,2,5) × (3,4,−1) =
product of vectors u and v
(−22, 16, − 2)
6 ÷ 3 atau 6/3 berati 6 dibagi
2 ÷ 4 = .5
vector algebra
÷
division
bagi
3.
aritmatika
12/4 = 3
square root
akar kuadrat
√x berarti bilangan positif yang
kuadratnya x.
√4 = 2
bilangan real
√
complex square
root
the complex
square root of;
square root
if z = r exp(iφ) is represented
in polar coordinates with -π <
√(-1) = i
φ ≤ π, then √z = √r exp(iφ/2).
Bilangan kompleks
absolute value
||
nilai mutlak dari
numbers
|x| means the distance in
the real line (or the complex
plane) between x and zero.
|3| = 3, |-5| = |5|
|i| = 1, |3+4i| = 5
factorial
!
faktorial
n! adalah hasil dari 1×2×...×n.
4! = 1 × 2 × 3 × 4 = 24
combinatorics
probability
distribution
~
has distribution;
tidk terhingga
X ~ D, means the random
variable X has the probability
X ~ N(0,1), the standard normal distribution
distribution D.
statistika
material implication A ⇒ B means if A is true
⇒
implies; if .. then
then nothing is said about B.
→ may mean the same as ⇒,
→
or it may have the meaning
propositional logic
⊃
then B is also true; if A is false
forfunctions given below.
⊃ may mean the same as ⇒,
or it may have the meaning
forsuperset given below.
x = 2 ⇒ x2 = 4 is true, but x2 = 4 ⇒ x= 2 is in
general false (since x could be −2).
⇔
material
equivalence
if and only if; iff
↔
A ⇔ B means A is true if B is
true and A is false if B is false.
x + 5 = y +2 ⇔ x + 3 = y
propositional logic
logical negation
¬
not
The statement ¬A is true if and
only if A is false.
¬(¬A) ⇔ A
A slash placed through
˜
x ≠ y ⇔ ¬(x = y)
propositional logic another operator is the same
as "¬" placed in front.
logical
conjunction or mee
t in alattice
∧
and
The statement A ∧ B is true
if A and B are both true; else it
is false.
n < 4 ∧ n >2 ⇔ n = 3 when n is anatural
number.
propositional
logic, lattice theory
logical
disjunction or join i
n alattice
∨
n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 when n is anatural number.
The statement A ∨ B is true
if A or B (or both) are true; if
propositional both are false, the statement is \
logic, lattice theory false.
The
statement A ⊕
⊕
xor
B is true when
proposition
either A or B,
al
but not both,
logic, Bool
ean
algebra
⊻
are
true. A ⊻ B me
||exclusive or
ans the same.
universal
quantification
∀
for all; for any; for
each
∀ x: P(x) means P(x) is true for
all x.
∀ n ∈ N: n2 ≥ n.
predicate logic
∃
existential
∃ x: P(x) means there is at
quantification
least one x such that P(x) is
there exists
true.
∃ n ∈ N: n is even.
(¬A)
⊕ A is
always
true, A ⊕
A is
always
false.
predicate logic
uniqueness
quantification
∃!
∃! x: P(x) means there is
there exists exactly exactly one x such that P(x) is
one
∃! n ∈ N: n + 5 = 2n.
true.
predicate logic
:=
definition
x := y or x ≡ y means x is
is defined as
≡
defined to be another name
for y (but note that ≡ can also
mean other things, such
as congruence).
everywhere
:⇔
P :⇔ Q means P is defined to
cosh x := (1/2)
(exp x + exp (−x))
A XOR B :⇔
(A ∨ B) ∧ ¬(A ∧ B)
be logically equivalent to Q.
set brackets
{,}
the set of ...
{a,b,c} means the set
consisting of a, b, and c.
N = {0,1,2,...}
teori himpunan
{:}
set builder notation
the set of ... such
{|}
that ...
teori himpunan
{x : P(x)} means the set of
all x for which P(x) is true.
{n ∈ N : n2 < 20} =
{x | P(x)} is the same as
{0,1,2,3,4}
{x : P(x)}.
himpunan kosong
∅
{}
∈
himpunan kosong
teori himpunan
memiliki elemen. {} juga berarti
hal yang sama.
{n ∈ N : 1 < n2 <
4} = ∅
set membership
is an element of; is a ∈ S means a is an element
not an element of
∉
∅ berarti himpunan yang tidak
everywhere, teori
(1/2)−1 ∈ N
of the set S; a ∉ S means a is
not an element of S.
2−1 ∉ N
himpunan
⊆
subset
is a subset of
⊂
A ⊆ B means every element
of A is also element of B.
teori himpunan A ⊂ B means A ⊆ B but A ≠ B.
A ∩ B ⊆ A; Q ⊂ R
⊇
superset
A ⊇ B means every element
is a superset of
⊃
A ∪ B ⊇ B; R ⊃ Q
teori himpunan A ⊃ B means A ⊇ B but A ≠ B.
set-theoretic union
∪
of B is also element of A.
A ∪ B means the set that
the union of ...
contains all the elements
and ...; union
from A and also all those
teori himpunan
A⊆B ⇔ A∪B=B
from B, but no others.
set-theoretic
intersection
∩
A ∩ B means the set that
intersected with;
intersect
contains all those elements
that A andB have in common.
{x ∈ R : x2 =
1} ∩ N = {1}
teori himpunan
set-theoretic
\
complement
A \ B means the set that
minus; without
contains all those elements
of A that are not in B.
{1,2,3,4} \ {3,4,5,6} =
{1,2}
teori himpunan
function application
of
()
f(x) berarti nilai fungsi f pada
Jika f(x) := x2,
elemen x.
maka f(3) = 32 = 9.
Perform the operations inside
(8/4)/2 = 2/2 = 1, but
the parentheses first.
8/(4/2) = 8/2 = 4.
teori himpunan
precedence
grouping
umum
f:X→
Y
function arrow
from ... to
teori himpunan
f: X → Y means the
function f maps the set X into
the set Y.
Let f: Z → N be
defined by f(x) = x2.
function
composition
o
composed with
fog is the function, such that
(fog)(x) = f(g(x)).
if f(x) = 2x, and g(x)
= x + 3, then (fog)(x)
= 2(x + 3).
teori himpunan
Bilangan asli
N
N
N berarti {0,1,2,3,...}, but see
the article on natural numbers
{|a| : a ∈ Z} = N
Bilangan
for a different convention.
ℕ
Z
Bilangan bulat
Z berarti {...,
Z
−3,−2,−1,0,1,2,3,...}.
ℤ
{a : |a| ∈ N} = Z
Bilangan
Bilangan rasional
Q
3.14 ∈ Q
Q
ℚ
Q berarti {p/q : p,q ∈ Z, q ≠ 0}.
π∉Q
Bilangan
Bilangan real
R
R berarti {limn→∞ an :
R
ℝ
π∈R
∀ n ∈ N: an ∈ Q, the limit
Bilangan
exists}.
√(−1) ∉ R
C means {a + bi : a,b ∈ R}.
i = √(−1) ∈ C
Bilangan kompleks
C
C
ℂ
Bilangan
infinity
∞
∞ is an element of
infinity
numbers
pi
is greater than all real
Euclidean
geometry
norm
in limits.
antara
keliling lingkaran dengan
diameternya.
A = πr² adalah luas
lingkaran dengan
jari-jari (radius) r
||x|| is the norm of the
norm of; length of
linear algebra
element x of a normed vector
∑k=1n ak means a1 + a2 + ... + an
sum over ...
from ... to ... of
||x+y|| ≤ ||x|| + ||y||
space.
summation
∑
limx→0 1/|x| = ∞
numbers; it often occurs
π berarti perbandingan (rasio)
pi
π
|| ||
the extended number line that
.
∑k=14 k2 = 12 + 22 +
32 + 42 = 1 + 4 + 9 +
16 = 30
aritmatika
product
∏k=14 (k + 2) = (1 +
product over ...
from ... to ... of
∏k=1n ak means a1a2···an.
2) = 3 × 4 × 5 × 6 =
360
aritmatika
∏
2)(2 + 2)(3 + 2)(4 +
Cartesian product
the Cartesian
product of; the
direct product of
∏i=0nYi means the set of
all (n+1)-tuples (y0,...,yn).
∏n=13R = Rn
set theory
derivative
'
… prime;
derivative of …
f '(x) is the derivative of the
function f at the point x, i.e.,
theslope of the tangent there.
If f(x) = x2,
then f '(x) = 2x
kalkulus
indefinite
integral or antideriv
ative
indefinite integral
of …; the
∫ f(x) dx means a function
whose derivative is f.
∫x2 dx = x3/3 + C
antiderivative of …
∫
kalkulus
definite integral
∫ab f(x) dx means the
integral from ...
signed area between the x-
to ... of ... with
axis and thegraph of
respect to
kalkulus
∫0b x2 dx = b3/3;
the function f between x = a an
d x = b.
gradient
∇
del, nabla, gradient
of
∇f (x1, …, xn) is the vector of
partial derivatives (df / dx1,
…, df /dxn).
If f (x,y,z) = 3xy + z²
then ∇f = (3y, 3x, 2z)
kalkulus
∂
partial derivative
partial derivative of
With f (x1, …, xn), ∂f/∂xi is the
If f(x,y) = x2y, then
derivative of f with respect to
∂f/∂x = 2xy
xi, with all other variables kept
kalkulus constant.
boundary
boundary of
∂M means the boundary of M
∂{x : ||x|| ≤ 2} =
{x : || x || = 2}
topology
perpendicular
x ⊥ y means x is
is perpendicular to perpendicular to y; or more
⊥
geometri
generally x is orthogonal to y.
If l⊥m and m⊥n the
n l || n.
bottom element
the bottom element
x = ⊥ means x is the smallest
element.
∀x : x ∧ ⊥ = ⊥
lattice theory
A ⊧ B means the
entailment
|=
sentence A entails the
entails
sentence B, that is
model theory
A ⊧ A ∨ ¬A
everymodel in which A is
true, B is also true.
inference
infers or is derived
|-
x ⊢ y means y is derived
from
propositional
from x.
A → B ⊢ ¬B → ¬A
logic, predicate
logic
normal subgroup
◅
is a normal
N ◅ G means that N is a
subgroup of
normal subgroup of group G.
Z(G) ◅ G
group theory
quotient group
/
mod
group theory
G/H means the quotient of
group G modulo its
subgroup H.
isomorphism
≈
2a, b, b+a, b+2a} /
{0, b} = {{0, b},
{a, b+a}, {2a, b+2a}}
Q / {1, −1} ≈ V,
G ≈ H means that group G is
is isomorphic to
{0, a,
isomorphic to group H
where Q is
the quaternion
group and V is
the Klein four-group.
Istilah Matematika Dalam Bahasa Inggris
Berikut beberapa istilah-istilah matematika dalam bahasa Inggris.
Bilangan Bulat = Integers (Z)
Bilangan Asli = Natural number (N)
Bilangan Cacah = Whole number (W)
Bilangan Genap = Even number
Bilangan Ganjil = Odd number
Penjumlahan = Addition
Pengurangan = Subtraction
Pembagian = Divisio
Perkalian = Multiplication
Sifat asosiatif = Associative principle
Sifat komutatif = Commutative principle
Kelipatan persekutuan terkecil (KPK) = Least common multiple
Faktor persekutuan terbesar (FPB) = Greatest common divisor
Pecahan = fraction
Pecahan-pecahan yang senilai dan tidak senilai = Equality and inequality of
rational numbers
Pecahan campuran = Mixed rational number
Desimal = Decimals
Operasi bilangan desimal = The operations of decimals
Garis bilangan = The number line
Bentuk baku = Scientific notation
Pangkat bilangan = Powers of numbers
Bentuk aljabar = Algebraic forms
Aritmatika sosial = Social arithmetic
Persamaan linier = Linear equations
Variabel = Variable
Pertidaksamaan linier = Linear inequalities
Modulus (Pengayaan) = Enrichment
Perbandingan = Proportion
Pembilang= Numerator
Penyebut = Denominator
Perbandingan seharga = Direct proportion
Perbandingan berbalik harga = Inverse proportion
Garis = Lines
Sudut = Angles
Derajat = Degrees
Keliling = Circumference
Luas = Area
Sisi = Side
Sudut dalam = Interior angle
Himpunan = Sets
Himpunan semesta = Universal set
Gabungan himpunan = Union of sets
Irisan himpunan = Intersection of sets
Komplemen suatu himpunan = Complement of a set
Diagram Venn = Venn diagrams
Himpunan-himpunan yang sama = Equal sets
Himpunan-himpunan yang ekuivalen = Equivalent sets
Himpunan-himpunan yang saling lepas (Saling asing) = Disjoint sets