03 Melukis Grafik Fungsi Polinom

PENERAPAN TURUNAN FUNGSI
B. Melukis Grafik Fungsi Polinom
Langkah- Langkah melukis Grafik Fungsi polinom
1. Menentukan titik potong dengan sumbu X dan sumbu Y (jika mudah ditentukan)
2. Menentukan interval fungsi naik dan fungsi turun serta titik-titik stasionernya
3. Menentukan Interval cekung atas dan cekung bawah fungsi serta titik beloknya
4. Melukis sketsa grafik
Untuk lebih jelasnya, ikutilah contoh soal berikut ini :
01. Lukislah grafik fungsi polinom f(x) = x3 – 9x2 + 24x – 10
Jawab
Langkah 1 : Menentukan titik potong dengan sumbu-sumbu koordinat.
Titik potong dengan sumbu-x sulit ditentukan
Titik potong dengan sumbu-y
Syarat : x = 0
Maka : y = (0)3 – 9(0)2 + 24(0) – 10
y = –10
Titiknya (0, –10)

Langkah 2 : Interval fungsi naik dan turun
f(x) = x3 – 9x2 + 24x – 10
f’(x) = 3x2 – 18x + 24

maka : f’(x) = 0
3x2 – 18x + 24 = 0
x2 – 16x + 8 = 0
(x – 4)(x – 2) = 0
x1 = 2 dan x2 = 4

()

()

2

()

4

Uji : x = 0 maka f’(0) = 3(0)2 – 18(0) + 24 = 24 > 0

(fungsi naik)


2

Uji : x = 3 maka f’(3) = 3(3) – 18(3) + 24 = –3 < 0 (fungsi turun)
2

Uji : x = 5 maka f’(4) = 3(5) – 18(5) + 24 = 9 > 0

Penerapann Turunan Fungsi

(fungsi naik)

1

Sehingga interval fungsi naik pada x < 2 atau x > 4
interval fungsi turun pada 2 < x < 4
Titik stasionernya :
x = 2 maka f(2) = (2)3 – 9(2)2 + 24(2) – 10 = 10 , Titik maksimum di (2, 10)
x = 4 maka f(4) = (4)3 – 9(4)2 + 24(4) – 10 = –5 , Titik minimum di (4, –42)
Langkah 3 : Menentukan interval cekung atas dan cekung bawah
f(x) = x3 – 9x2 + 24x – 10

f’(x) = 3x2 – 18x + 24
f’’(x) = 6x – 18
maka f’’(x) = 0
6x – 18 = 0
6x = 18 maka x = 3
()

()

3
Uji : x = 0 maka f’’(0) = 6(0) – 18 = –18 < 0 (cekung bawah)
Uji : x = 4 maka f’’(4) = 6(4) – 18 = 6 > 0
(cekung atas)
Koordinat titik beloknya :
x = 3 maka f(3) = (3)3 – 9(3)2 + 24(3) – 10 = 29 Jadi titiknya (3, 8)
Gambar grafiknya :
y

(2, 10)


(3, 8)

x
O

(0,  10)

(4,  42)
02. Lukislah grafik fungsi polinom f(x) = x3 + 3x2 – 9x – 20
Jawab
Langkah 1 : Menentukan titik potong dengan sumbu-sumbu koordinat.
Titik potong dengan sumbu-x sulit ditentukan
Titik potong dengan sumbu-y
Penerapann Turunan Fungsi

2

Syarat : x = 0
Maka : y = (0)3 + 3(0)2 – 9(0) – 20
y = –20

Titiknya (0, –20)
Langkah 2 : Interval fungsi naik dan turun
f(x) = x3 + 3x2 – 9x – 20
f’(x) = 3x2 + 6x – 9
maka : f’(x) = 0
3x2 + 6x – 9 = 0
x2 + 2x – 3 = 0
(x + 3)(x – 1) = 0
x1 = –3 dan x2 = 1

()

()

–3

()

1


Uji : x = –4 maka f’(–4) = 3(–4)2 + 6(–4) – 9 = 15 > 0 (fungsi naik)
Uji : x = 0 maka f’(3) = 3(0)2 + 6(0) – 9 = –9 < 0 (fungsi turun)
Uji : x = 2 maka f’(2) = 3(2)2 + 6(2) – 9 = 15 > 0 (fungsi naik)
Sehingga interval fungsi naik pada x < –3 atau x > 1
interval fungsi turun pada –3 < x < 1
Titik stasionernya :
x = –3 maka f(–3) = (–3)3 + 3(–3)2 – 9(–3) – 20 = 7 , Titik maksimum di (–3, 7)
x = 1 maka f(1) = (1)3 + 3(1)2 – 9(1) – 20 = –25 , Titik minimum di (1, –25)
Langkah 3 : Menentukan interval cekung atas dan cekung bawah
f(x) = x3 + 3x2 – 9x – 20
f’(x) = f’(x) = 3x2 + 6x – 9
f’’(x) = 6x + 6
maka f’’(x) = 0
6x + 6 = 0
6x = –6
x = –1
()

()


–1
Uji : x = –2 maka f’’(–2) = 6(–2) + 6 = –6 < 0
Uji : x = 0 maka f’’(0) = 6(0) + 6 = 6 > 0

(cekung bawah)
(cekung atas)

Koordinat titik beloknya :
x = –1 maka f(–1) = (–1)3 + 3(–1)2 – 9(–1) – 20 = –9 Jadi titiknya (–1, –9)

Penerapann Turunan Fungsi

3

Gambar grafiknya :

y

(3, 7)


x

O

(1,  9)

(1,  20)
(1,  25)
03. Lukislah grafik fungsi polinom f(x) = x4 – 8x2 + 12
Jawab
Langkah 1 : Titik potong dengan sumbu-sumbu koordinat
Titik potong dengan sumbu-x (syarat y = 0)
x4 – 8x2 + 12 = 0
(x2)2 – 8(x2) + 12 = 0
(x2 – 6)(x2 – 2) = 0
(x –

6 )(x +

x1 =


6 , x2 = – 6 , x3 =

6 )(x – 2 )(x + 2 ) = 0

2 , x4 = – 2

Jadi titiknya : ( 6 , 0) , (– 6 , 0) , ( 2 , 0) , (– 2 , 0)
Titik potong dengan sumbu-y (syarat x = 0)
y = (0)4 – 8(0)2 + 12
y = 12
Titiknya : (0, 12)
Langkah 2 : Interval fungsi naik dan turun
f(x) = x4 – 8x2 + 12
f’(x) = 4x3 – 16x
maka : f’(x) = 0
4x3 – 16x = 0
4x(x2 – 4) = 0

Penerapann Turunan Fungsi


4

4x(x – 2)(x + 2) = 0
x1 = 0 , x2 = 2 , x3 = –2

()

()

()

–2

0

2

Uji : x = –3 maka f’(–3) = 4(–3)3 – 16(–3) = –60 < 0 (fungsi turun)
Uji : x = –1 maka f’(–1) = 4(–1)3 – 16(–1) = 12 > 0 (fungsi naik)

Uji : x = 1 maka f’(1) = 4(1)3 – 16(1) = –12 < 0 (fungsi turun)
Uji : x = 3 maka f’(3) = 4(3)3 – 12(3) = 60 > 0 (fungsi naik)
Sehingga interval fungsi naik pada –2 < x < 0 atau x > 2
interval fungsi turun pada x < –2 atau 0 < x < 2
Titik stasionernya :
x = –2 maka f(–2) = (–2)4 – 8(–2)2 + 12 = –4 , Titik minimum di (–2, –4)
x = 0 maka f(0) = (0)4 – 8(0)2 + 12 = 12 , Titik maksimum di (0, 12)
x = 2 maka f(2) = (2)4 – 8(2)2 + 12 = –4 , Titik minimum di (2, –4)

Langkah 3 : Menentukan interval cekung atas dan cekung bawah
f(x) = x4 – 8x2 + 12
f’(x) = 4x3 – 16x
f’’(x) = 12x2 – 16
maka f’’(x) = 0
12x2 – 16 = 0
3x2 – 4 = 0
x2 = 4/3
2
2
3 dan x2 =
3
x1 = –
3
3
()

()

()



2
3
3

2
3
3

Uji : x = –2 maka f’’(–2) = 12(–2)2 – 16 = 32 > 0 (cekung atas)
Uji : x = 0 maka f’’(0) = 12(–2)2 – 16 = –16 < 0
(cekung bawah)
2
Uji : x = 2 maka f’’(2) = 12(2) – 16 = 32 > 0 (cekung atas)

Penerapann Turunan Fungsi

5

Koordinat titik beloknya :
28
28
2
2
2
2
2
3 maka f(–
3 ) = (–
3 )4 – 8(–
3 )2 + 12 = –
3, )
x=–
titiknya (–
3
3
3
3
3
3
3
28
28
2
2
2
2
2
3 maka f(
3)=(
3 )4 – 8(
3 )2 + 12 = –
3, )
x=
Jadi titiknya (
3
3
3
3
3
3
3
Gambar grafiknya :

y
12

(

2
28
3, )
3
3

(

2
28
3, )
3
3

x
 6

 2

(2,  4)

Penerapann Turunan Fungsi

O

2

6

(2,  4)

6