Optimasi Penentuan Rute Terpendek Pengambilan Sampah Menggunakan Multi Travelling Salesman Problem
Vol. 2, No. 6, Juni 2018, hlm. 2227-2234 http://j-ptiik.ub.ac.id
Optimasi Penentuan Rute Terpendek Pengambilan Sampah
Menggunakan Multi Travelling Salesman Problem
1 2 3 Ryan Mahaputra Krishnanda , Budi Darma Setiawan , MarjiProgram Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Brawijaya 1 2 3 Email: [email protected], [email protected], [email protected]
Abstrak
Sampah merupakan suatu permasalahan lingkungan yang tidak ada hentinya dan permasalahan dari sampah perlu dipikirkan dan ditanggulangi bersama. Menurut data tahun 2015 dari Satuan Kerja Perangkat Daerah (SKPD) Kota Denpasar, produksi sampah pertahun di Kota Denpasar sebesar 3
1.335.819,48 m . Pada tahun yang sama, volume angkutan sampah dari armada Dinas Kebersihan dan 3 Pertamanan (DKP) mencapai 1.065.016 m atau terealisasi 79,73% dan menunjukkan armada angkutan DKP kota Denpasar belum bisa menyentuh target 80%. Pada penelitian ini akan menentukan rute optimal bagi beberapa kendaraan pengangkut sampah dari kantor DKP menuju ke titik-titik tempat sampah dan berakhir di TPA. Permasalahan tersebut merupakan permasalahan dari Multi Travelling
Salesman Promblem (m-TSP) dan salah satu algoritme untuk menyelesaikan permasalahan m-TSP ialah
dengan algoritme genetika. Proses dari algoritme genetika ini menggunakan representasi permutasi, proses reproduksi crossover dengan one-cut point, proses mutasi dengan exchange mutation, dan proses seleksi dengan elitism selection. Setelah melakukan uji coba, didapatkan hasil parameter yang paling optimal yaitu pada populasi dengan jumlah 100, dengan jumlah kendaraan pengangkut sampah sebanyak 4, nilai cr=0.3, mr=0.7 dan generasi sebesar 900. Hasil dari program dengan parameter tersebut menghasilkan rata-rata nilai fitness terbesar yaitu 0.569.
Kata kunci: optimasi, penentuan rute, pengambilan sampah, multi travelling salesman problem, algoritme
genetika
Abstract
Garbage is an unending environmental problem and this issue needs to be considered and handled
together. According to data of 2015 from the Satuan Kerja Perangkat Daerah (SKPD) or Regional
3 Device Work Unit of Denpasar, the annual garbage production in Denpasar is 1,335,819.48 m . In thesame year, the volume of garbage transport from the Department of Hygiene and Gardening or also
known as Dinas Kebersihan dan Pertamanan (DKP) reached 1,065,016 m3 or realized 79.73% and
shows the DKP transport fleet Denpasar can not touch the 80% target. This study will determine the
optimal route for some garbage transport vehicles from the DKP office to the dump points and end up
in the landfill. This happens because of the problem from Multi Traveling Salesman Problem (m-TSP)
and one of the algorithms to solve m-TSP problems is with genetic algorithm. The process of this genetic
algorithm uses permutation representation, crossover reproduction process with one-cut point,
mutation process with exchange mutation, and selection process with elitism selection. After conducting
the experiment, the most optimal parameter is obtained in population with the amount of 100, with the
number of garbage transport vehicles as much as 4, the value of cr = 0.3, mr = 0.7 and the generation
of 900. The results of the program with the parameters will yield 0.569 as maximum average of fitness
value.
Keywords: optimization, route determination, garbage collection, multi travelling salesman problem, genetic
algorithmlingkungan yang tidak ada hentinya dan 1. permasalahan dari sampah perlu dipikirkan dan
PENDAHULUAN
ditanggulangi bersama. Menurut laporan tahun Sampah merupakan suatu permasalahan 2015 oleh Kementerian Lingkungan Hidup,
Fakultas Ilmu Komputer Universitas Brawijaya
2227 permasalahan sampah pada tahun 2015, terjadi peningkatan jumlah timbunan sampah di Indonesia mencapai 175.000 ton/hari atau setara 64 juta ton/tahun (Hidup, 2015) . Permasalahan sampah semakin meningkat hal ini dikarenakan sering dengan pertambahan jumlah penduduk yang cepat, modernisasi kehidupan, meningkatnya aktivitas manusia serta perkembangan ilmu dan teknologi.
Di Kota Denpasar sendiri memperkirakan produksi dari sampah ini dengan mengasumsikan 1 orang per hari menghasilkan 4 liter sampah dengan total jumlah penduduk 880.600 jiwa dan mengalami peningkatan volume sampah ketika hari-hari besar seperti Galungan, Kuningan maupun Nyepi kurang lebih 60% sehingga produksi dari sampah di Kota Denpasar pertahun sebesar 1.335.819,48 m 3 atau 333.954,87 ton/tahun. Pada tahun yang sama, volume angkutan sampah dari armada
Dinas Kebersihan dan Pertamanan (DKP) mencapai 1.065.016 m 3 atau terealisasi 79,73% dan menunjukkan armada angkutan DKP Kota Denpasar belum bisa menyentuh target 80% (SKPD, 2015).
Dengan jumlah sampah perhari yang cukup besar dan belum terpenuhinya target pengangkutan tersebut, pengemudi truk pengangkut sampah harus menentukan rute tercepat dari satu titik tempat sampah sampai ke titik tempat sampah lainnya sehingga semua sampah dapat diangkut ke tempat pembuangan akhir (TPA) secepatnya. Keterlambatan dan kesalahan dalam menentukan rute pengambilan sampah tersebut nantinya dapat berakibat menumpuknya sampah sampai keesokan harinya. Keterlambatan dan kesalahan dalam menentukan rute ini juga berdampak pada waktu kerja armada DKP yang semakin lama serta biaya bahan bakar kendaraan yang semakin tinggi. Oleh sebab itu, optimasi untuk menentukan rute terpendek pengambilan sampah ini diperlukan dan diharapkan dapat mempermudah tugas pengemudi truk pengangkut sampah dalam menentukan rute pengambilan sampah.
Untuk permasalahan yang serupa dengan penentuan rute ini telah banyak penelitian yang sudah dilakukan sebelumnya seperti yang dilakukan oleh Hutami (2014) yang membahas tentang pencarian rute terpendek pengangkutan sampah di Kota Malang. Penelitian ini menggunakan metode heuristic yaitu nearest
insertion dan modified nearest insertion
menggunakan savings method. Metode savings dalam modified nearest insertion digunakan untuk penentuan rute awal yang akan dilewati.
Hasil dari penelitian tesebut menggunakan metode modified nearest insertion menghasilkan rute yang lebih pendek dan waktu yang lebih singkat dibandingkan nearest insertion. Tapi solusi yang dihasilkan nearest insertion belum optimal karena ruang pencarian yang kurang luas dan iterasi proses pencarian solusi hanya sekali (Hutami, 2014). Selain itu, penelitian lain yang serupa juga dilakukan oleh Fitriana Yuli (2015) yang meneliti tentang penentuan rute loper koran menggunakan metode m-TSP. Dari penelitian tersebut, memiliki beberapa asumsi berupa pelanggan harus dikunjungi tepat satu kali dari total jumlah pelanggan yaitu 160 pelanggan, dengan total 8 sales. Dari hasil penelitian dengan delapan loper koran dan 160 pelanggan diperoleh jarak terpendek sejauh 144,16 km pada iterasi ke-98 dan dapat disimpulkan bahwa hasil akan lebih baik jika semakin banyak iterasi yang digunakan (Yuli, 2015).
Berdasarkan sumber penelitian yang telah dijelaskan tersebut, algoritme genetika dapat digunakan pada berbagai permasalahan seperti permasalahan optimasi penentuan rute. Pada penelitian ini, algoritme genetika digunakan untuk dapat menyelesaikan permasalahan optimasi penentuan rute pengambilan sampah menggunakan multi traveling salesman problem (m-TSP).
2. SAMPAH
Menurut World Health Organization (WHO), sampah merupakan suatu barang atau benda yang berasal dari aktivitas manusia, yang tidak lagi digunakan atau tidak disukai kemudian dibuang (Chandra, 2006). Pada Undang-Undang No. 18 Tahun 2008 tentang pengolahan sampah mendefinisikan bahwa sampah merupakan sisa kegiatan sehari-hari manusia atau proses alam yang berbentuk padat. Berdasarkan UU No. 18 Tahun 2008 tersebut, terdapat tiga ruang lingkup sampah yaitu sampah rumah tangga, sampah sejenis sampah rumah tangga, dan sampah spesifik. Sampah rumah tangga merupakan sampah yang berasal dari kegiatan dalam rumah tangga, tidak termasuk tinja dan sampah spesifik. Sampah sejenis sampah rumah tangga merupakan sampah yang berasal dari wilayah industri, kawasan khusus dan kawasan sosial serta fasilitas sosial dan fasilitas umum.
Sedangkan sampah spesifik merupakan sampah yang mengandung bahan berbahaya dan beracun seperti limbah dan sampah yang muncul akibat bencana atau puing bongkaran bangunan.
3. M-TSP
Penentuan rute terpendek merupakan bagian dari permasalahan Traveling Salesman
variabel keputusan dan kemudian menghasilkan solusi. Nilai chromosome dapat dinilai bagus dengan menggunakan nilai fitness pada algoritme genetika. Chromosome yang dinilai paling baik diharapkan akan menjadi solusi yang mendekati optimum.
salesman dari i menuju j
, merupakan jarak dari i menuju j 4.
Algoritme genetika (Genetic Algorithms, GAs) adalah turunan dari algoritme evolusi (evolutionary algorithms, EAs) yang banyak digunakan dan dapat mengatasi berbagai permasalahan seperti optimasi, penentuan rute, penjadwalan, dan lain-lain. Charles Darwin mengemukakan bahwa algoritme genetika ialah algoritme yang menggunakan proses seleksi dengan cara alamiah (Suprayogi, et al., 2014).
Representasi solusi dari sebuah permasalahan pada algoritme genetika dapat digambarkan dalam suatu bentuk chromosome.
Chromosome ini disusun dari gen-gen berupa
Gambar 1. Diagram Alir Algoritme Genetika
Tahap-tahap proses dari optimasi penentuan rute pengambilan sampah dengan m- TSP ini secara umum ditunjukkan pada Gambar 1:
salesman dari i menuju j
4.1. Inisialisasi
Inisialisasi merupakan tahapan untuk membandingkan kemudian membentuk himpunan solusi baru secara acak yang terdiri dari beberapa chromosome. beberapa chromosome yang telah dibentuk tersebut kemudian ditempatkan dalam sebuah populasi. Pada tahap inisialisasi awal, ukuran populasi (popSize) akan ditentukan terlebih dahulu. Nilai
Start jml_populasi, jml_gen, jml_daerah , jml_truk
Inisialisasi Crossover Mutasi Evaluasi
Seleksi For int i = 1 to jml_gen - 1 Finish i Hasil Optimal
= 0, apabila tidak terdapat rute perjalanan
Keterangan: = 1, apabila terdapat rute perjalanan
Problem (TSP), namun saat ini banyak instansi
diformulasikan dalam persamaan (Nurhumam & Mahmudy, 2008):
pemerintah atau perusahaan-perusahaan besar yang telah siap melakukan pelayanan kepada masyarakat, seperti pengambilan sampah ke berbagai tempat oleh lebih dari seorang
salesman. Oleh sebab itu, diperlukan pendekatan
berupa penentuan rute yang memiliki lebih dari seorang salesman yaitu Multi Travelling
Salesman Problem (m-TSP). Multi Travelling Salesman Problem
(m-TSP) merupakan metode yang digunakan agar mampu memilih rute jarak terpendek yang harus dilewati namun dengan beberapa orang salesman yang harus mengunjungi beberapa lokasi satu kali dan kembali ke kota awal. Pada permasalahan m- TSP, kemungkinan dari solusi alternatif yang terbentuk akan semakin banyak. Solusi alternatif juga akan semakin banyak jika terdapat lebih dari seorang salesman dan memiliki lokasi kunjungan yang semakin banyak. Kasus m-TSP memiliki n buah yang merupakan lokasi-lokasi yang harus dikunjungi oleh sejumlah m
salesman . m-TSP secara matematis dapat
Z = min{∑ ∑ =1 =1
=1 (5)
} (1) Dengan kendala,
∑ = 1 untuk j = 1, 2, 3, … , − 1 =1
(2) ∑ = 1 untuk j = 1, 2, 3, … , − 1
=1 (3) ∑
1 =
=1 (4) ∑
1 =
ALGORITME GENETIKA
tersebut menunjukkan jumlah chromosome pada setiap generasi yang dilakukan (Mahmudy, 2015).
Antarmuka yang terdapat pada perangkat lunak dalam menyelesaikan permasalahan m- TSP dengan studi kasus pencarian rute terpendek pengambilan sampah terdiri dari dua halaman, yaitu halaman input dan halaman output. Pada halaman input, akan ditampilkan kolom yang harus diisi oleh user serta akan menampilkan data matriks jarak antar lokasi pengambilan sampah. Pada halaman output, akan ditampilkan tabel berupa tabel inisialisasi awal serta tabel hasil perhitungan dari algoritme genetika.
inisialisasi dapat dilihat pada Gambar 3 dan tampilan halaman output dari tabel hasil dapat dilihat pada Gambar 4.
input . Tampilan halaman output dari tabel
Pada halaman output , user akan ditampilkan tabel inisialisasi dimana pada tabel inisialisasi terdapat nilai dari inisialisasi awal. Selain itu, user juga dapat menampilkan tabel hasil dimana pada tabel hasil akan menampilkan hasil perhitungan algoritme genetika dari nilai- nilai yang telah user masukkan pada halaman
5.2. Halaman Output
Gambar 2.Antarmuka Halaman Input
kromosom yang didapat dari jumlah daerah dan jumlah truk, panjang rute atau daerah pengambilan sampah dan jumlah truk yang digunakan untuk mengangkut sampah. Tampilan dari halaman input dapat dilihat pada Gambar 2.
crossover rate (Cr), mutation rate (Mr), panjang
Dalam halaman input, user akan ditampilkan tabel data matriks jarak antar lokasi pengambilan sampah serta user akan diminta untuk memasukkan nilai data yang terdiri dari jumlah populasi, banyak generasi, nilai
5.1. Halaman Input
Seleksi merupakan tahapan untuk memilih individu-individu yang lolos dari himpunan populasi dan offspring yang kemudian akan menjadi parent untuk generasi selanjutnya. Pada tahap seleksi, nilai fitness digunakan untuk menentukan individu yang lolos ke generasi selanjutnya. Dalam penelitian Nugraha dan Mahmudy (2015), nilai fitness yang tinggi akan memberikan peluang besar terpilih menjadi induk untuk ke generasi selanjutnya (Nugraha & Mahmudy, 2015).
4.2. Reproduksi
4.4. Seleksi
c = Total jarak (cost)
Keterangan:
100 (6)
=
fitness terdapat dua persamaan, yaitu fitness untuk maksimasi dan untuk minimasi.
Evaluasi adalah tahap dasar yang terdapat pada proses seleksi. Terdapat dua hal yang dilakukan dalam melakukan evaluasi. Pertama adalah evaluasi fungsi objektif (tujuan) dan kedua adalah konversi fungsi objektif ke dalam fungsi fitness. Nilai fitness menyatakan nilai dari kebaikan solusi yang dihasilkan oleh tiap individu dalam satu populasi. Menurut Mahmudy (2015), untuk mendapatkan nilai
4.3. Evaluasi
Reproduksi adalah tahapan untuk mendapatkan individu baru (offspring) dari individu yang sebelumnya telah terpilih. Terdapat dua jenis operator yang dapat mengembangkan individu baru yaitu tukar silang (crossover) dan mutasi (mutation). Operator- operator tersebut nantinya harus menentukan nilai yang akan digunakan dari crossover rate (Cr) dan mutation rate (Mr) untuk menentukan jumlah individu baru yang akan terbentuk.
5. IMPLEMENTASI
Gambar 5. Hasil Pengujian Jumlah Populasi
Berdasarkan hasil dari pengujian jumlah populasi tersebut, bahwa nilai rata-rata fitness paling besar adalah 0.495 yang terjadi pada populasi ke-100 dengan rata-rata waktu eksekusi 515.4 detik dan nilai rata-rata fitness paling kecil
Gambar 3.Antarmuka Halaman Output Inisialisasi
adalah 0.401 yang terjadi pada iterasi ke-10 dengan rata-rata waktu eksekusi 40.4 detik. Dari hasil tersebut dapat ditarik kesimpulan bahwa semakin banyak jumlah populasi maka akan menghasilkan nilai rata-rata fitness yang semakin bagus. Banyaknya populasi akan sangat mempengaruhi dalam pencarian solusi pada perangkat lunak ini serta akan berpengaruh kepada waktu proses dari perangkat lunak. Pada populasi ke-40, 70, dan 90 terjadi penurunan hal ini dikarenakan pada proses inisialisasi awal berpengaruh untuk mendapatkan hasil optimasi dari perangkat lunak karena pada inisialisasi awal, individu dipilih secara acak sehingga pada saat proses tersebut nilai individu tersebut sudah baik, maka proses pengujian akan menghasilkan nilai-nilai yang sama untuk iterasi berikutnya
Gambar 4.Antarmuka Halaman Output Hasil
dan akan menjadi kurang optimal. Selain itu, metode eletism selection pada proses seleksi juga turut mempengaruhi karena pada metode 6.
PENGUJIAN DAN PEMBAHASAN
tersebut hanya individu dengan nilai fitness besar yang diberikan kesempatan untuk
6.1. Pengujian Jumlah Populasi
reproduksi, sedangkan individu dengan nilai Tujuan dari pengujian jumlah populasi ini fitness yang rendah tidak diberikan kesempatan. adalah agar mendapatkan hasil solusi terbaik
Padahal bisa saja solusi optimum diperoleh dari dalam menentukan jalur pengambilan sampah. hasil reproduksi individu dengan nilai fitness
Pengujian ini menggunakan sebanyak 1000 yang kecil (Mahmudy, 2015). generasi dengan crossover rate (Cr) 0.4 dan
Berdasarkan hasil pengujian tersebut, dapat
mutation rate (Mr) 0.6 dan akan melakukan
ditarik kesimpulan bahwa rata-rata waktu untuk pengujian sebanyak 5 kali dengan jumlah menjalankan program akan semakin lama jika kendaraan 10. Ukuran dari populasi yang jumlah populasi semakin banyak. Rata-rata dilakukan pengujian yaitu 10, 20, 30, 40, 50, 60, waktu yang dibutuhkan pada saat mencapai 100
70, 80, 90, 100. Hasil pengujian jumlah populasi populasi adalah 515.4 detik atau lebih dari 8 dapat dilihat pada Gambar 5. menit.
Gambar 6. Rata-Rata Waktu Pengujian Jumlah Populasi
rate maka akan menghasilkan nilai rata-rata fitness yang semakin bagus.
6.4. Pengujian Banyak Generasi
Berdasarkan hasil dari pengujian jumlah kendaraan pengangkut sampah tersebut, bahwa nilai rata-rata fitness paling besar adalah 0.569 yang terjadi pada saat jumlah kendaraan berjumlah 4 dengan rata-rata waktu eksekusi 2.2 detik dan nilai rata-rata fitness paling kecil adalah 0.457 yang terjadi pada saat jumlah kendaraan berjumlah 10 dengan rata-rata waktu eksekusi 269.2 detik. Dari hasil tersebut dapat ditarik kesimpulan bahwa semakin banyak jumlah kendaraan maka akan menghasilkan nilai rata-rata fitness yang semakin kurang bagus karena akan menghasilkan nilai cost yang semakin rendah. Hal ini dikarenakan nilai cost dari setiap kendaraan didapatkan dari titik awal keberangkatan kendaraan yaitu dari Dinas Kebersihan dan Pertamanan (DKP) menuju daerah-daerah yang ditentukan kemudian akan berakhir di Tempat Pembuangan Akhir (TPA).
Gambar 8. Hasil Pengujian Jumlah Kendaraan Pengangkut Sampah
Jumlah kendaraan yang dilakukan pengujian yaitu 2, 4, 6, 8, 10. Hasil pengujian jumlah populasi dapat dilihat pada Gambar 8.
rate (Cr) 0.4 dan mutation rate (Mr) 0.6 serta akan melakukan pengujian sebanyak 5 kali.
Pengujian ini dilakukan agar mengetahui pengaruh waktu serta mengetahui jumlah kendaraan yang optimal untuk mengangkut sampah. Jumlah kendaraan pengangkut sampah akan diinputkan dengan bilangan antara 2 sampai 10. Pengujian ini menggunakan ukuran populasi sebanyak 50 dengan menjalankan pengujian sebanyak 1000 generasi dan crossover
6.3. Pengujian Jumlah Kendaraan Pengangkut Sampah
266 detik. Dari hasil tersebut dapat ditarik kesimpulan bahwa semakin tinggi nilai mutation
6.2. Pengujian Kombinasi Crossover Rate dan Mutation Rate
mutation rate 0 dengan rata-rata waktu eksekusi
rata-rata waktu eksekusi 220.6 detik dan nilai rata-rata fitness paling kecil adalah 0.302 yang terjadi pada kombinasi crossover rate 1 dan
crossover rate 0.3 dan mutation rate 0.7 dengan
Berdasarkan hasil dari pengujian kombinasi tersebut, bahwa nilai rata-rata fitness paling besar adalah 0.469 yang terjadi pada kombinasi
Gambar 7. Hasil Pengujian Kombinasi
mendapatkan hasil solusi terbaik dalam menentukan jalur pengambilan sampah. Pengujian kombinasi ini menggunakan ukuran populasi sebanyak 50, jumlah kendaraan 10 dan akan menjalankan 1000 generasi yang kemudian akan melakukan pengujian sebanyak 5 kali. Hasil pengujian kombinasi ini dapat dilihat pada Gambar 7.
rate dan mutation rate ini adalah agar
Tujuan dari pengujian kombinasi crossover
Pengujian terakhir adalah pengujian banyak generasi terhadap nilai fitness. Tujuan dari pengujian banyak generasi ini adalah agar mendapatkan hasil solusi terbaik dalam menentukan jalur pengambilan sampah. Pengujian banyak generasi ini menggunakan ukuran populasi sebesar 50 dan jumlah kendaraan 10. Ukuran generasi yang dilakukan pengujian yaitu 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 dengan crossover rate (Cr) 0.4 dan mutation rate (Mr) 0.6 dan akan melakukan pengujian sebanyak 5 kali. Hasil penelitian yang telah dilakukan adalah pengujian jumlah populasi dapat dilihat pada dengan menentukan parameter algoritme Gambar 10. genetika agar dapat memperoleh solusi yang terbaik dan optimal. Sesuai dengan hasil pengujian, didapat bahwa semakin banyak jumlah populasi maka akan menghasilkan nilai rata-rata fitness yang semakin bagus. Akan tetapi jangan terlalu banyak karena jika jumlah populasi terlalu banyak, dapat membuat jalan program menjadi lambat. Jumlah populasi yang mencapai rata-rata nilai fitness tertinggi yaitu 100 dengan nilai fitness rata-rata yaitu
Gambar 9. Hasil Pengujian Banyak Generasi
0.495. Untuk hasil pengujian kombinasi Cr Berdasarkan hasil pengujian tersebut, dapat dan Mr, hasil solusi terbaik terjadi pada saat ditarik kesimpulan bahwa jumlah generasi tidak nilai Cr 0.3 dan nilai Mr 0.7 dengan nilai terlalu berdampak kepada rata-rata waktu untuk rata-rata fitness adalah 0.469. Lalu hasil menjalankan program. Rata-rata waktu tertinggi dari pengujian jumlah kendaraan terjadi pada saat banyak generasi mencapai 300 pengangkut sampah terbaik terjadi pada generasi yang menghasilkan rata-rata waktu saat jumlah kendaraan berjumlah 4 dengan 282.4 detik atau lebih dari 4 menit. rata-rata fitness yaitu 0.569. Sedangkan untuk banyak generasi, semakin banyak generasi yang dijalankan maka akan menghasilkan nilai rata-rata fitness yang semakin baik. Banyak generasi yang mencapai rata-rata nilai fitness tertinggi yaitu pada generasi ke-900 dengan rata-rata nilai fitness yaitu 0.462.
Dari hasil penelitian tersebut, saran yang dapat diberikan dan yang menjadi pertimbangan untuk penelitian lebih lanjut yaitu agar dapat
Gambar 10. Rata-Rata Waktu Pengujian Banyak
menambahkan beberapa parameter atau kriteria
Generasi
penelitian seperti volume atau kapasitas dari kendaraan pengangkut sampah dan tempat
7. KESIMPULAN
pembuangan sementara, dapat menambahkan Berdasarkan hasil dari penelitian dan waktu perjalanan antar daerah pengambilan pengujian yang telah dilakukan pada penelitian sampah, dan juga dapat menambahkan faktor- ini, dapat ditarik kesimpulan bahwa: faktor lain seperti tingkat kemacetan jalan.
1. Algoritme genetika dapat diterapkan untuk
Selain itu, algoritme genetika juga dapat menyelesaikan permasalahan Multi- menyelesaikan permasalahan multi-travelling
Travelling Salesman Problem dalam salesman problem lainnya.
penentuan rute terpendek antar lokasi pengambilan sampah di Kota Denpasar
DAFTAR PUSTAKA dengan menghasilkan biaya yang minimal.
Chandra, B., 2006. Pengantar Kesehatan Tahap-tahap algoritme genetika yang Lingkungan. Jakarta: EGC. digunakan pada penelitian ini adalah representasi kromosom yang digunakan
Hidup, K. L., 2015. Kementerian Lingkungan pada tahap inisialisasi populasi awal dengan Hidup. [Online] permutasi, lalu pada tahap reproduksi Available at: menggunakan one-cut point untuk proses http://www.menlh.go.id/rangkaian-hlh-
crossover dan menggunakan exchange
2015-dialog-penanganan-sampah-
mutation untuk proses mutasi. Tahap
plastik/ terakhir yaitu seleksi yang menggunakan [Diakses 2 Februari 2017].
elitism selection.
Hutami, D. W., 2014. Implementasi Algoritma 2. Pengukuran dari kualitas terbaik pada
Nearest Insertion Heuristic dan Modified Nearest Insertion Heuristic
pada Optimasi Rute Kendaraan Pengangkut Sampah. Program Teknologi Informasi dan Ilmu Komputer: Universitas Brawijaya.
Jong Jek, S., 2006. Matematika Diskrit dan Aplikasinya pada Ilmu Komputer. 3th penyunt. Yogyakarta: ANDI Yogyakarta.
Mahmudy, W. F., 2015. Algoritma Evolusi.
Fakultas Ilmu Komputer: Universitas Brawijaya. Nugraha, D. C. A. & Mahmudy, W. F., 2015.
Optimasi Vehicle Routing Problem with Pada Distribusi Katering
Time Windows Menggunakan Algoritma Genetika.
Seminar Nasional Sistem Informasi Indonesia. Nurhumam, S. D. & Mahmudy, W. F., 2008.
Optimasi Multi Travelling Salesman
Problem (M-TSP) pada Mobil Patroli
Polisi dengan Algoritma Heuristic
Assigment Fisher-Jaikumar dan Algoritma A*. Kursor, Volume 4, pp.
15-22. SKPD, 2015. Laporan Akuntabilitas Kinerja
Instansi Pemerintah (LAKIP), Kota Denpasar: Dinas Kebersihan dan Pertamanan.
Suprayogi, D. A., Mahmudy, W. F. & Furqon, M. T., 2014. Optimasi Rute Antar Jemput Laundry Dengan Time Windows (TSPTW) Menggunakan Algoritma Genetika. DORO, 3(12), pp. 1-9.
Wirdasari, D., 2011. Teori Graph Dan Implementasinya Dalam Ilmu Komputer. Jurnal Saintikom, Volume 10, pp. 23-34.
Yuli, F., 2015. Multi Traveling Salesman
Problem (Mtsp) Dengan Algoritma
Genetika Untuk Menentukan Rute Loper Koran Di Agen Surat Kabar.