zsupmat.doc 27KB Jun 05 2011 09:30:47 PM
Supplementary Material
for
Conformers of Gaseous Protonated Glycine
Kui Zhang and Alice Chung-Phillips*
Department of Chemistry
Miami University
Oxford, OH 45056
(Revised: July 1998)
Submitted to
The Journal of Computational Chemistry
March 1998
Table S-I. Relative electronic energies and thermodynamic properties for lowenergy conformers of glycine and protonated glycine calculated at the MP2/631G* optimized levela-c
__________________________________________________________________________________
Symmetry
Ee
EZP
(E -- E0)
S
Gtherm
__________________________________________________________________________________
Glycine (Gly)
Ip
IIn
IIIp
IVn
Vn
VIp
VIIp
VIIIn
Cs
C1
Cs
C1
C1
Cs
Cs
C1
0.000
1.156
1.638
2.113
3.092
6.492
8.290
8.881
0.000
0.399
0.017
-0.047
0.043
-0.218
-0.233
-0.327
0.000
-0.211
0.021
-0.030
-0.049
0.040
-0.060
0.041
0.000
-1.943
2.654
-0.582
-0.467
-0.099
-0.736
-0.190
0.000
0.753
-0.754
0.098
0.132
-0.141
-0.065
0.066
Protonated Glycine (GlyH +)
1m
C1
0.000
0.000
0.000
0.000
0.000
2n
Cs
3.904
-0.038
0.073
1.787
-0.496
3n
Cs
9.920
-0.455
0.094
3.171
-1.290
4m
C1
33.670
-1.836
0.237
1.992
-2.128
5m
Cs
34.148
-1.665
0.042
-0.320
-1.469
6m
C1
35.742
-1.554
0.074
0.089
-1.452
7m
Cs
37.637
-2.091
0.342
4.135
-2.908
8m
Cs
39.036
-1.931
0.076
-0.068
-1.766
__________________________________________________________________________________
See Figures 2-4 and Figure 4 of ref. 11. E e, EZP, and E0 at 0 K; E, S, and Gtherm at
298.15 K and 1 atm. Units: Ee in hartree; Ee, EZP, and (E -- E0) in kcal mol-1; S
a
in cal (Kmol)-1. Expression for Gtherm may be deduced from eq. (1) for which RT =
0.59249 kcal mol-1. Values are relative to those of Ip or 1m. The E e, EZP, E -- E0,
S, and Gtherm values are, respectively, -283.619194, 51.132, 3.464, 74.488, and
31.170 for Ip and -283.975231, 60.310, 3.496, 74.935, and 39.922 for 1m. The
listed EZP is not scaled. See Tables 1, 2, and S-5 of ref. 11.
b
Relative to Gtherm = 0.000 for Ip or 1m, Gtherm = EZP + (E - E0) -- (298.15 K)
S,
where EZP has been scaled by 0.9646 (ref.33).
The energy minima IIIp, 2n, and 3n (Cs) at the MP2/6-31G* level turn into
transition states (Cs) at higher levels such as MP2/6-31+G**, MP2/6-311+G**,
and MP2/6-311++G**.
c
Table S-II. Geometrical parameters for the most stable conformer of
protonated glycine (1m) optimized at the MP2/6-31G*, MP2/6-31G**, MP2/631+G**, MP2/6-311+G** levels.a
__________________________________________________________________________________
Parameterb
MP2/6-31G*
MP2/6-31G**
MP2/6-31+G**
MP2/6-
311+G**
__________________________________________________________________________________
C2--C1
O3--C1
O4--C1
H5--O4
N6--C2
H7--C2
H8--C2
H9--N6
H10--N6
H11--N6
O3--C1--C2
O4--C1--C2
H5--O4--C1
N6--C2--C1
H7--C2--C1
H8--C2--C1
H9--N6--C2
H10--N6--C2
H11--N6--C2
O4--C1--C2--O3
H5--O4--C1--O3 (3)
1.523
1.219
1.323
0.984
1.501
1.090
1.091
1.027
1.028
1.042
121.2
110.7
109.3
105.8
112.0
110.2
113.3
112.2
106.5
179.1
0.8
1.524
1.219
1.321
0.974
1.499
1.085
1.086
1.021
1.021
1.038
120.9
110.9
109.4
105.6
111.8
110.3
113.2
112.4
105.7
179.3
0.7
1.522
1.221
1.325
0.976
1.499
1.086
1.087
1.022
1.023
1.033
121.1
110.9
109.8
106.0
112.2
110.0
112.9
111.9
107.3
178.9
1.3
1.525
1.210
1.319
0.972
1.498
1.090
1.091
1.023
1.024
1.033
121.0
110.9
109.2
105.9
112.5
109.9
112.9
111.7
107.4
178.9
1.4
N6--C2--C1--O3 (2)
8.2
6.8
10.6
10.9
H7--C2--C1--N6
120.2
120.0
120.3
120.3
H8--C2--C1--N6
-118.1
-118.2
-117.7
-117.4
H9--N6--C2--C1
-138.0
-133.6
-147.8
-151.3
H10--N6--C2--C1
99.7
103.8
90.2
86.7
H11--N6--C2--C1 (1)
-17.3
-13.3
-26.4
-29.6
__________________________________________________________________________________
See Figure 1 (top) for atom labels. These data are shared with Table S-4 of
ref. 11.
b
Bond length A--B in Å; bond angle A—B--C and dihedral angle A—B—C--D in
a
, where A—B—C--D is measured clockwise from A--B to C--D viewed in the B
—to--C direction.
TABLE S-III. Dihedral angles (1, 2, 3, and 4) for the protonated glycine structures optimized at the MP2/6-31G*,
MP2/6-31G**, MP2/6-31+G**, and MP2/6-311+G** levels. a,b
_______________________________________________________________________________________________________________________
_
MP2/6-31G*
_________________________
MP2/6-31G**
MP2/6-31+G**
___________________________ __________________________
MP2/6-311+G**
__________________________
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
_______________________________________________________________________________________________________________________
_
1m -17.2
8.2
0.8
-13.3
6.8
0.7
-26.4 10.6
1.3
-29.6 10.9
1.4
1n
0.2
0.0
0.0
0.1
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
0.0
1t
-57.8
0.2
0.0
-58.1
-0.1
0.0
-58.4
-0.1
0.0
-58.3
0.0
0.0
2m
-------57.0 -176.2
-0.1
-52.8 -166.2
-0.1
2n
-58.7 -179.8
0.0
-58.8 -179.7
0.0
-58.8 -179.8
0.0
-58.7 180.0
0.0
2t -119.5 180.0
0.0
-119.5 180.0
0.0
-119.5 180.0
0.0
-119.5 180.0
0.0
3m
-------12.3
-6.2 179.3
-12.4
-6.6 178.8
3n
0.1
0.1 180.0
0.1
0.1 180.0
0.1
0.1 180.0
0.0
0.0 180.0
3t
-57.8
0.0 180.0
-57.5
0.1 180.0
-58.0
0.0 180.0
-57.9
0.0 180.0
4m 102.5 -179.5
-0.3 -0.1 102.5 -179.4
-0.3 -0.1 100.9 -179.2
-0.2
0.1 102.2 -175.0
0.0
1.6
4n 116.8 180.0
0.0
0.0 117.0 180.0
0.0
0.0 115.7 180.0
0.0
0.0 116.7 180.0
0.0
0.0
4t
92.4 134.8
-2.1 -2.9
92.4 133.0
-2.1 -2.5
90.4 134.6
-2.4 -3.5
90.8 131.2
-2.3 -2.6
5m -65.2 180.0
0.0
0.0 -65.1 180.0
0.0
0.0 -66.8 180.0
0.0
0.0 -65.4 180.0
0.0
0.0
6m -66.1 92.7
-0.1
9.7 -65.9 92.6
0.0
9.6 -69.3 93.5
-0.6
8.4 -65.6 95.4
-0.9
8.3
5t
-63.5 113.5
0.1
5.2 -63.5 112.5
0.1
5.3 -65.9 111.5
-0.3
4.8 -63.2 109.1
-0.5
5.5
6t
-77.0 65.5
0.6
4.9 -76.4 65.6
0.6
4.9 -80.7 69.0
0.2
4.9 -76.4 68.6
0.1
4.9
7m 117.5
0.0
0.0 180.0 117.5
0.0
0.0 180.0 116.5
0.0
0.0 180.0 117.3
0.0
0.0 180.0
7t
9.4 163.1
-0.5 -2.4
8.9 163.2
-0.4 -2.5
6.1 164.2
-0.4 -2.5
5.3 163.3
-0.3 -2.9
8m -65.8
0.0
0.0 180.0 -65.6
0.0
0.0 180.0 -67.5
0.0
0.0 180.0 -66.0
0.0
0.0 180.0
8t
-2.1 64.7
0.9
4.6
-2.0 64.0
0.8
4.5
-1.6 68.5
0.5
4.8
-1.0 70.0
0.1
4.6
_______________________________________________________________________________________________________________________
_
a
See Figures 1-3. At the MP2/6-31G* and MP2/6-31G** levels, 2m and 3m of C 1 symmetry are nonexistent while 2n
and 3n of Cs symmetry become the energy minima.
b
Symmetry rigorous dihedral angles for the Cs structures are expected for the MP2/6-311+G** level as a result of
using analytical HF force constants and tight convergence cutoffs in geometry optimizations.
TABLE S-IV. Electronic energies for the protonated glycine structures optimized at the MP2/6-31G*, MP2/631G**, MP2/6-31+G**, and MP2/6-311+G** levels including MP4 and zero-point energies at selected levels. a,b
________________________________________________________________________________________________________________
MP2/6-31G*
MP2/6-31G**
MP2/6-31+G**
MP2/6-311+G**
_________________________
__________
_____________________
_____________________
Ee
Ee (MP4)c
Ee
Ee
EZP
Ee
EZP
________________________________________________________________________________________________________________
1m
-283.975231 -284.031748
-284.027498
-284.040714 60.400
-284.233184 59.895
1n
-283.975196 -284.031713
-284.027485
-284.040545 60.205
-284.232980 59.644
1t
-283.974642 -284.031165
-284.026736
-284.040288 60.339
-284.232914 59.908
2m
----284.034826 60.312
-284.227564 59.946
2n
-283.969010 -284.025677
-284.020880
-284.034826 60.284
-284.227478 59.805
2t
-283.966656 -284.023333
-284.018581
-284.032441 60.045
-284.225133 59.508
3m
----284.025705 59.932
-284.218661 59.364
3n
-283.959422 -284.016300
-284.012364
-284.025694 59.829
-284.218653 59.233
3t
-283.958478 -284.015417
-284.011090
-284.024895 60.023
-284.217942 59.561
4m
-283.921574 -283.979156
-283.978897
-283.992629 58.619
-284.187865 58.310
4n
-283.921552 -283.979125
-283.978874
-283.992613 58.461
-284.187838 58.125
4t
-283.920591 -283.978264
-283.977800
-283.992077 59.001
-284.187153 58.642
5m
-283.920812 -283.978332
-283.978180
-283.991722 58.774
-284.186884 58.432
6m
-283.918272 -283.975879
-283.975562
-283.989676 58.955
-284.184750 58.708
5t
-283.918088 -283.975757
-283.975404
-283.989563 58.958
-284.184705 58.683
6t
-283.917400 -283.974907
-283.974720
-283.989150 58.563
-284.184210 58.510
7m
-283.915252 -283.972866
-283.972699
-283.986431 58.361
-284.181141 57.970
7t
-283.912975 -283.970498
-283.970450
-283.985043 58.473
-284.180805 58.120
8m
-283.913023 -283.970597
-283.970610
-283.984355 58.481
-284.178996 58.097
8t
-283.910555 -283.968185
-283.967793
-283.982365 58.846
-284.177719 58.451
________________________________________________________________________________________________________________
See Figures 2 and 3. Units: electronic energy Ee in hartree and zero-point energy EZP in kcal mol-1. The listed
EZP is not scaled.
b
At the MP2/6-31G* and MP2/6-31G** levels, 2m and 3m of C1 symmetry are nonexistent while 2n and 3n of
a
Cs symmetry become the energy minima.
c
At the MP4/6-31G*//MP2/6-31G* level.
for
Conformers of Gaseous Protonated Glycine
Kui Zhang and Alice Chung-Phillips*
Department of Chemistry
Miami University
Oxford, OH 45056
(Revised: July 1998)
Submitted to
The Journal of Computational Chemistry
March 1998
Table S-I. Relative electronic energies and thermodynamic properties for lowenergy conformers of glycine and protonated glycine calculated at the MP2/631G* optimized levela-c
__________________________________________________________________________________
Symmetry
Ee
EZP
(E -- E0)
S
Gtherm
__________________________________________________________________________________
Glycine (Gly)
Ip
IIn
IIIp
IVn
Vn
VIp
VIIp
VIIIn
Cs
C1
Cs
C1
C1
Cs
Cs
C1
0.000
1.156
1.638
2.113
3.092
6.492
8.290
8.881
0.000
0.399
0.017
-0.047
0.043
-0.218
-0.233
-0.327
0.000
-0.211
0.021
-0.030
-0.049
0.040
-0.060
0.041
0.000
-1.943
2.654
-0.582
-0.467
-0.099
-0.736
-0.190
0.000
0.753
-0.754
0.098
0.132
-0.141
-0.065
0.066
Protonated Glycine (GlyH +)
1m
C1
0.000
0.000
0.000
0.000
0.000
2n
Cs
3.904
-0.038
0.073
1.787
-0.496
3n
Cs
9.920
-0.455
0.094
3.171
-1.290
4m
C1
33.670
-1.836
0.237
1.992
-2.128
5m
Cs
34.148
-1.665
0.042
-0.320
-1.469
6m
C1
35.742
-1.554
0.074
0.089
-1.452
7m
Cs
37.637
-2.091
0.342
4.135
-2.908
8m
Cs
39.036
-1.931
0.076
-0.068
-1.766
__________________________________________________________________________________
See Figures 2-4 and Figure 4 of ref. 11. E e, EZP, and E0 at 0 K; E, S, and Gtherm at
298.15 K and 1 atm. Units: Ee in hartree; Ee, EZP, and (E -- E0) in kcal mol-1; S
a
in cal (Kmol)-1. Expression for Gtherm may be deduced from eq. (1) for which RT =
0.59249 kcal mol-1. Values are relative to those of Ip or 1m. The E e, EZP, E -- E0,
S, and Gtherm values are, respectively, -283.619194, 51.132, 3.464, 74.488, and
31.170 for Ip and -283.975231, 60.310, 3.496, 74.935, and 39.922 for 1m. The
listed EZP is not scaled. See Tables 1, 2, and S-5 of ref. 11.
b
Relative to Gtherm = 0.000 for Ip or 1m, Gtherm = EZP + (E - E0) -- (298.15 K)
S,
where EZP has been scaled by 0.9646 (ref.33).
The energy minima IIIp, 2n, and 3n (Cs) at the MP2/6-31G* level turn into
transition states (Cs) at higher levels such as MP2/6-31+G**, MP2/6-311+G**,
and MP2/6-311++G**.
c
Table S-II. Geometrical parameters for the most stable conformer of
protonated glycine (1m) optimized at the MP2/6-31G*, MP2/6-31G**, MP2/631+G**, MP2/6-311+G** levels.a
__________________________________________________________________________________
Parameterb
MP2/6-31G*
MP2/6-31G**
MP2/6-31+G**
MP2/6-
311+G**
__________________________________________________________________________________
C2--C1
O3--C1
O4--C1
H5--O4
N6--C2
H7--C2
H8--C2
H9--N6
H10--N6
H11--N6
O3--C1--C2
O4--C1--C2
H5--O4--C1
N6--C2--C1
H7--C2--C1
H8--C2--C1
H9--N6--C2
H10--N6--C2
H11--N6--C2
O4--C1--C2--O3
H5--O4--C1--O3 (3)
1.523
1.219
1.323
0.984
1.501
1.090
1.091
1.027
1.028
1.042
121.2
110.7
109.3
105.8
112.0
110.2
113.3
112.2
106.5
179.1
0.8
1.524
1.219
1.321
0.974
1.499
1.085
1.086
1.021
1.021
1.038
120.9
110.9
109.4
105.6
111.8
110.3
113.2
112.4
105.7
179.3
0.7
1.522
1.221
1.325
0.976
1.499
1.086
1.087
1.022
1.023
1.033
121.1
110.9
109.8
106.0
112.2
110.0
112.9
111.9
107.3
178.9
1.3
1.525
1.210
1.319
0.972
1.498
1.090
1.091
1.023
1.024
1.033
121.0
110.9
109.2
105.9
112.5
109.9
112.9
111.7
107.4
178.9
1.4
N6--C2--C1--O3 (2)
8.2
6.8
10.6
10.9
H7--C2--C1--N6
120.2
120.0
120.3
120.3
H8--C2--C1--N6
-118.1
-118.2
-117.7
-117.4
H9--N6--C2--C1
-138.0
-133.6
-147.8
-151.3
H10--N6--C2--C1
99.7
103.8
90.2
86.7
H11--N6--C2--C1 (1)
-17.3
-13.3
-26.4
-29.6
__________________________________________________________________________________
See Figure 1 (top) for atom labels. These data are shared with Table S-4 of
ref. 11.
b
Bond length A--B in Å; bond angle A—B--C and dihedral angle A—B—C--D in
a
, where A—B—C--D is measured clockwise from A--B to C--D viewed in the B
—to--C direction.
TABLE S-III. Dihedral angles (1, 2, 3, and 4) for the protonated glycine structures optimized at the MP2/6-31G*,
MP2/6-31G**, MP2/6-31+G**, and MP2/6-311+G** levels. a,b
_______________________________________________________________________________________________________________________
_
MP2/6-31G*
_________________________
MP2/6-31G**
MP2/6-31+G**
___________________________ __________________________
MP2/6-311+G**
__________________________
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
_______________________________________________________________________________________________________________________
_
1m -17.2
8.2
0.8
-13.3
6.8
0.7
-26.4 10.6
1.3
-29.6 10.9
1.4
1n
0.2
0.0
0.0
0.1
0.0
0.0
-0.1
0.0
0.0
0.0
0.0
0.0
1t
-57.8
0.2
0.0
-58.1
-0.1
0.0
-58.4
-0.1
0.0
-58.3
0.0
0.0
2m
-------57.0 -176.2
-0.1
-52.8 -166.2
-0.1
2n
-58.7 -179.8
0.0
-58.8 -179.7
0.0
-58.8 -179.8
0.0
-58.7 180.0
0.0
2t -119.5 180.0
0.0
-119.5 180.0
0.0
-119.5 180.0
0.0
-119.5 180.0
0.0
3m
-------12.3
-6.2 179.3
-12.4
-6.6 178.8
3n
0.1
0.1 180.0
0.1
0.1 180.0
0.1
0.1 180.0
0.0
0.0 180.0
3t
-57.8
0.0 180.0
-57.5
0.1 180.0
-58.0
0.0 180.0
-57.9
0.0 180.0
4m 102.5 -179.5
-0.3 -0.1 102.5 -179.4
-0.3 -0.1 100.9 -179.2
-0.2
0.1 102.2 -175.0
0.0
1.6
4n 116.8 180.0
0.0
0.0 117.0 180.0
0.0
0.0 115.7 180.0
0.0
0.0 116.7 180.0
0.0
0.0
4t
92.4 134.8
-2.1 -2.9
92.4 133.0
-2.1 -2.5
90.4 134.6
-2.4 -3.5
90.8 131.2
-2.3 -2.6
5m -65.2 180.0
0.0
0.0 -65.1 180.0
0.0
0.0 -66.8 180.0
0.0
0.0 -65.4 180.0
0.0
0.0
6m -66.1 92.7
-0.1
9.7 -65.9 92.6
0.0
9.6 -69.3 93.5
-0.6
8.4 -65.6 95.4
-0.9
8.3
5t
-63.5 113.5
0.1
5.2 -63.5 112.5
0.1
5.3 -65.9 111.5
-0.3
4.8 -63.2 109.1
-0.5
5.5
6t
-77.0 65.5
0.6
4.9 -76.4 65.6
0.6
4.9 -80.7 69.0
0.2
4.9 -76.4 68.6
0.1
4.9
7m 117.5
0.0
0.0 180.0 117.5
0.0
0.0 180.0 116.5
0.0
0.0 180.0 117.3
0.0
0.0 180.0
7t
9.4 163.1
-0.5 -2.4
8.9 163.2
-0.4 -2.5
6.1 164.2
-0.4 -2.5
5.3 163.3
-0.3 -2.9
8m -65.8
0.0
0.0 180.0 -65.6
0.0
0.0 180.0 -67.5
0.0
0.0 180.0 -66.0
0.0
0.0 180.0
8t
-2.1 64.7
0.9
4.6
-2.0 64.0
0.8
4.5
-1.6 68.5
0.5
4.8
-1.0 70.0
0.1
4.6
_______________________________________________________________________________________________________________________
_
a
See Figures 1-3. At the MP2/6-31G* and MP2/6-31G** levels, 2m and 3m of C 1 symmetry are nonexistent while 2n
and 3n of Cs symmetry become the energy minima.
b
Symmetry rigorous dihedral angles for the Cs structures are expected for the MP2/6-311+G** level as a result of
using analytical HF force constants and tight convergence cutoffs in geometry optimizations.
TABLE S-IV. Electronic energies for the protonated glycine structures optimized at the MP2/6-31G*, MP2/631G**, MP2/6-31+G**, and MP2/6-311+G** levels including MP4 and zero-point energies at selected levels. a,b
________________________________________________________________________________________________________________
MP2/6-31G*
MP2/6-31G**
MP2/6-31+G**
MP2/6-311+G**
_________________________
__________
_____________________
_____________________
Ee
Ee (MP4)c
Ee
Ee
EZP
Ee
EZP
________________________________________________________________________________________________________________
1m
-283.975231 -284.031748
-284.027498
-284.040714 60.400
-284.233184 59.895
1n
-283.975196 -284.031713
-284.027485
-284.040545 60.205
-284.232980 59.644
1t
-283.974642 -284.031165
-284.026736
-284.040288 60.339
-284.232914 59.908
2m
----284.034826 60.312
-284.227564 59.946
2n
-283.969010 -284.025677
-284.020880
-284.034826 60.284
-284.227478 59.805
2t
-283.966656 -284.023333
-284.018581
-284.032441 60.045
-284.225133 59.508
3m
----284.025705 59.932
-284.218661 59.364
3n
-283.959422 -284.016300
-284.012364
-284.025694 59.829
-284.218653 59.233
3t
-283.958478 -284.015417
-284.011090
-284.024895 60.023
-284.217942 59.561
4m
-283.921574 -283.979156
-283.978897
-283.992629 58.619
-284.187865 58.310
4n
-283.921552 -283.979125
-283.978874
-283.992613 58.461
-284.187838 58.125
4t
-283.920591 -283.978264
-283.977800
-283.992077 59.001
-284.187153 58.642
5m
-283.920812 -283.978332
-283.978180
-283.991722 58.774
-284.186884 58.432
6m
-283.918272 -283.975879
-283.975562
-283.989676 58.955
-284.184750 58.708
5t
-283.918088 -283.975757
-283.975404
-283.989563 58.958
-284.184705 58.683
6t
-283.917400 -283.974907
-283.974720
-283.989150 58.563
-284.184210 58.510
7m
-283.915252 -283.972866
-283.972699
-283.986431 58.361
-284.181141 57.970
7t
-283.912975 -283.970498
-283.970450
-283.985043 58.473
-284.180805 58.120
8m
-283.913023 -283.970597
-283.970610
-283.984355 58.481
-284.178996 58.097
8t
-283.910555 -283.968185
-283.967793
-283.982365 58.846
-284.177719 58.451
________________________________________________________________________________________________________________
See Figures 2 and 3. Units: electronic energy Ee in hartree and zero-point energy EZP in kcal mol-1. The listed
EZP is not scaled.
b
At the MP2/6-31G* and MP2/6-31G** levels, 2m and 3m of C1 symmetry are nonexistent while 2n and 3n of
a
Cs symmetry become the energy minima.
c
At the MP4/6-31G*//MP2/6-31G* level.