Pembuatan Asam Oksalat Dari Pelepah Kelapa Sawit (Elaeis guineensis) Menggunakan Metode Peleburan Alkali

BAB II
TINJAUAN PUSTAKA

2. 1 PELEPAH KELAPA SAWIT
Kelapa sawit (elaeis guineensis) adalah tanaman pohon tropis yang terutama
ditanam untuk produksi industri minyak nabati. Habitat asli kelapa sawit adalah
hutan hujan tropis dengan curah hujan 1780 – 2280 mm3 per tahun dengan kisaran
suhu 24 – 30 oC. Kelapa sawit juga toleran dengan berbagai jenis tanah asalkan
mendapat pasokan air yang cukup [11]. Untuk pertumbuhan dan produksi yang
optimal, tanaman kelapa sawit membutuhkan curah hujan yang tinggi dan suhu
yang stabil sepanjang tahun, tanah harus dalam dan berdrainase baik. Tanaman
kelapa sawit tumbuh terutama di dataran rendah daerah tropis di bawah ketinggian
400 m [12].
Dibandingkan dengan komoditi lainnya pada sub-sektor perkebunan, kelapa
sawit merupakan salah satu komoditas yang pertumbuhannya paling pesat.
Perkebunan kelapa sawit sampai saat ini terus berkembang hampir di semua
provinsi di Indonesia sehingga luasannya terus meningkat. Agroindustri kelapa
sawit berkembang pesat di Indonesia dalam dua dekade terakhir [13]. Namun
seiring dengan perkembangan tersebut, timbul persoalan baru yaitu dihasilkannya
sejumlah limbah padat, baik yang berasal dari aktivitas perkebunan. Perkebunan
kelapa sawit menghasilkan sisa atau limbah yang belum dimanfaatkan secara

optimal, limbah yang dihasilkan oleh perkebunan kelapa sawit ada tiga macam
yaitu limbah padat, cair, dan gas [14]. Pelepah kelapa sawit merupakan salah satu
limbah padat dari perkebunan kelapa sawit yang dapat diperoleh sepanjang tahun
bersamaan dengan panen tandan buah segar.
Total potensi jumlah limbah pelepah kelapa sawit di Indonesia sebanyak
81.887.936 ton/tahun [15]. Nutrisi pelepah kelapa sawit meliputi 5,8 % protein
kasar, 48,6 % serat kasar, dan 3,3 % abu [16]. Dari data tersebut dapat diketahui
bahwa komponen penyusun terbesar dari pelepah kelapa sawit adalah serat kasar.

8
Universitas Sumatera Utara

Serat kasar pelepah kelapa sawit terdiri dari selulosa, hemiselulosa, dan lignin.
Komposisi kimia pelepah kelapa sawit dapat dilihat pada Tabel 2.1.
Tabel 2.1 Komposisi Kimia Pelepah Kelapa Sawit [17]

2.2

No. Komponen Kimia


Kadar (%)

1.

Selulosa

31,5 ± 0,3

2.

Hemiselulosa

19,2 ± 0,1

3.

Lignin

14,0 ± 0,5


4.

Abu

12,3 ± 0,2

5.

Protein

9,4 ± 0,1

SELULOSA
Selulosa adalah senyawa berbentuk benang-benang serat, terdapat sebagai

komponen terbesar dalam dinding sel pepohonan, jerami, rumput, enceng gondok,
dan tanaman lainnya. Selulosa pada tanaman merupakan serat-serat panjang yang
bersama-sama hemiselulosa membentuk 5 dan 6 karbon gula dan lignin. Molekulmolekul tersebut berikatan dan membentuk rantai panjang dari kesatuan Dglukose yang dihubungkan oleh rantai

glukosida1,4. Rumus molekul selulosa


adalah C6H11O6 - (C6H10O5) - C6H11O5 [10]. Struktur selulosa dapat dilihat pada
gambar berikut :

Gambar 2.1.Struktur Selulosa
Selulosa yang mempunyai rumus molekul (C6H10O5)n memiliki derajat
polimerisasi yang jumlahnya > 10.000. Sifat-sifat selulosa terdiri dari sifat fisika
dan sifat kimia. Selulosa rantai panjang mempunyai sifat fisik yang lebih kuat,
9
Universitas Sumatera Utara

dan lebih tahan lama terhadap degradasi yang disebabkan oleh pengaruh panas,
bahan kimia maupun pengaruh biologis. Sifat fisika selulosa yang penting adalah
panjang, lebar dan tebal molekulnya. Sifat fisik lain dari selulosa adalah:
1.

Dapat terdegradasi oleh hidrolisis, oksidasi, fotokimia maupun secara
mekanis sehingga berat molekulnya menurun.

2.


Tidak larut dalam air maupun pelarut organik, tetapi sebagian larut dalam
larutan alkali.

3.

Dalam keadaan kering, selulosa bersifat higroskopis, keras dan rapuh. Bila
selulosa cukup banyak mengandung air maka akan bersifat lunak. Jadi fungsi
air disini adalah sebagai pelunak.

4.

Selulosa dalam kristal mempunyai kekuatan lebih baik jika dibandingkan
dengan bentuk amorfnya [18].
Panjang suatu rangkaian selulosa tergantung pada derajat polimerisasinya.

Semakin panjang suatu rangkaian selulosa, maka rangkaian selulosa tersebut
mempunyai serat yang lebih kuat, lebih tahan terhadap pengaruh bahan kimia,
cahaya, dan mikroorganisme. Selulosa dapat dibedakan menjadi:
1. α-selulosa yaitu jenis selulosa ini tidak dapat larut dalam larutan NaOH

dengan kadar 17,5% pada suhu 200 oC dan merupakan bentuk sesungguhnya
yang telah dikenal sebagai selulosa.
2.

-selulosa yaitu jenis selulosa yang mudah larut dalam larutan NaOH 17,5%
dengan derajat polimerisasi 15-90 pada suhu 200 oC dan akan mengendap bila
larutan tersebut berubah menjadi larutan yang memiliki suasana asam.

3.

-selulosa memiliki sifat yang sama dengan

-selulosa, dengan derajat

polimerisasi kurang dari 15 [14].
Struktur selulosa yang bermacam-macam menyebabkannya dapat digunakan
sebagai bahan pembuat produk terbarukan seperti bioetanol dan berbagai macam
kebutuhan termasuk juga asam oksalat.

2.3


ASAM OKSALAT
Asam oksalat disintesis untuk pertama kali pada tahun 1776 oleh Scheele

melalui oksidasi gula dengan asam nitrat. Kemudian oleh Wohler disintesis
dengan hidrolisis sianogen pada tahun 1824 [19]. Asam oksalat banyak digunakan
10
Universitas Sumatera Utara

dalam industri sebagai bahan pembuat seluloid, rayon, bahan peledak,
penyamakan kulit, pemurnian gliserol dan pembuatan zat warna. Selain itu asam
oksalat juga dapat digunakan sebagai pembersih peralatan dari besi, katalis, dan
reagen laboratorium [10].
Pada tahun 1829, Gay Lussac menemukan bahwa asam oksalat dapat
diproduksi dengan cara meleburkan serbuk gergaji dalam larutan alkali. Asam
oksalat merupakan turunan dari asam karboksilat yang mengandung 2 gugus
karboksil yang terletak pada ujung-ujung rantai karbon yang lurus yang
mempunyai rumus molekul C2H2O4. Asam oksalat tidak berbau, higroskopis,
berwarna putih sampai tidak berwarna dan mempunyai berat molekul 90 gr/mol
[20].

Kebutuhan asam oksalat di Indonesia setiap tahun selalu meningkat. Saat
ini Indonesia masih mengimpor asam oksalat dari China, untuk memenuhi
sebagian kebutuhan asam oksalat dalam negeri. Saat ini terdapat 6 macam
teknologi yang telah dikembangkan untuk sintesis asam oksalat secara komersial,
yaitu oksidasi karbohidrat, etilen glikol, proses propilen, proses dialkil oksalat,
proses peleburan alkali, dan fermentasi glukosa.

Tabel 2.2 Sifat Fisika dan Kimia Asam Oksalat Anhidrat dan Dihidrat [10]
Sifat

Nilai

Asam oksalat anhidrat (C2H2O4.H2O)
 Titik leleh
 Densitas
 Panas spesifik (Padat, -200-50 oC)
 Berat molekul
 Tidak berbau
 Berwarna bening
 Tidak menyerap air

Asam oksalat dihidrat (C2H2O4.2H2O)
 Titik leleh
 Densitas
 pH
 Berat molekul
 Tidak berbau
 Dapat kehilangan molekul air

189,5 oC
1,9 gr/mL
1,084 + 0.0318t
90,04 gr/mol

101,5 oC
1,653 g/cm3
1 (10 gr/l H2O, 20 oC)
126,07 gr/mol

11
Universitas Sumatera Utara


2.3.1 PEMBUATAN ASAM OKSALAT
Asam oksalat dapat disintesis dengan 6 metode yaitu:
1. Oksidasi Karbohidrat
Cara ini ditemukan oleh Scheele pada tahun 1776. Asam oksalat diproduksi
dengan mengoksidasi karbohidrat seperti glukosa, sukrosa, pati, dekstrin, dan
selulosa dengan menggunakan asam nitrat. Biasanya untuk proses ini bahan
yang digunakan adalah bahan yang banyak mengandung karbohidat, misalnya
tepung. Tepung yang digunakan biasanya adalah tepung jagung, tepung gandum,
tepung ubi jalar atau tepung yang lainnya dan bisa juga menggunakan gula atau
molase. Ketika digunakan bahan baku seperti selulosa maka harus dihidrolisa
terlebih dahulu dengan asam sulfat, sehingga menjadi monosakarida. Glukosa
ini kemudian dioksidasi dengan asam nitrat pada temperatur 63-85 oC dengan
katalis vanadium pentoksida [19].
Reaksi :
5C6H12O6 + 30HNO3

V2O5

15C2H2O4 +


3NO

+ 9N2O

+

9NO2 +
Glukosa

As. Nitrat

As.Oksalat Nitrogen monoksida Nitrooksida Nitrit

30 H2O
Air

Produksi asam oksalat dengan oksidasi karbohidrat masih dapat
dikembangkan karena banyaknya bahan baku seperti limbah pertanian [19].
Dalam pembuatan asam oksalat dengan proses ini bahan dasarnya mengandung 
60 % larutan glukosa. Temperatur pada proses ini perlu dikontrol dan dijaga.
Untuk menghindari terjadinya oksidasi asam oksalat menjadi karbondioksida,
maka ditanggulangi dengan penambahan asam sulfat. Kemurnian produk akhir
adalah 99 % dengan konversi asam oksalat pada proses ini adalah 63 – 65 %.
Prosesnya dapat dilakukan secara batch maupun kontinu [21].
2. Proses Etilen Glikol
Dalam proses ini etilen glikol dioksidasi dalam campuran 30-40 % asam
sulfat dan asam nitrat 20-25 % dengan 0,001- 0,1 % vanadium pentoksida pada
suhu 50-70 oC untuk menghasilkan asam oksalat lebih dari 93% [21].
12
Universitas Sumatera Utara

Proses ini telah dikembangkan di Jepang oleh Mitsubishi Gas Chemical
yang memproduksi 12.000 Ton/tahun asam oksalat. Etilen glikol teroksidasi
dengan konsentrasi 60 % asam nitrat pada 0,3 MPa (43,5 psi), 80 oC dengan
oksigen. Inisiator seperti NaNO2 dapat membantu menghasilkan oksida
nitrogen dan promotor seperti senyawa vanadium atau asam sulfat yang
digunakan untuk mempercepat reaksi oksidasi. Yield asam oksalat yang
dihasilkan adalah 90 % [19].
Reaksi yang berlangsung pada proses ini adalah.
(CH2OH)2 + 4NO2

(COOH)2

Etilen Glikol

As.Oksalat

4NO

Nitrit

+

+

+ 2H2O

Nitrogen monoksida Air

2O2

Nitrogen monoksida

4NO

4NO2

Oksigen

Nitrit

Keseluruhan:
(CH2OH)2 + 2O2

(COOH)2 + 2H2O

E.Glikol

As.Oksalat

Oksigen

Air

3. Proses Propilen
Pembuatan asam oksalat dengan oksidasi propilen, menggunakan gas bersih
dari stok umpan pada operasi perengkahan minyak bumi. Pada proses propilen,
propilen dioksidasi oleh asam nitrat melalui 2 tahap. Tahap pertama propilen
direaksikan dengan NO 2 cair untuk menghasilkan produk antara berupa asam αnitrolaktat

yang selanjutnya dioksidasi pada temperatur

tinggi untuk

menghasilkan asam oksalat [19].
Rhone-Poulenc (Prancis) mengembangkan sebuah versi modifikasi

dari

proses pembuatan asam oksalat atau asam laktat, atau keduanya dari propilen.
Pada tahun 1978, sebanyak 65.000 ton/tahun asam oksalat diproduksi di seluruh
dunia dengan proses ini, Pada 1990-an proses ini dioperasikan hanya oleh
Rhone-Poulenc [19]. Reaksi oksidasi Rhone-Poulenc seperti persamaan reaksi
berikut:

CH3CH=CH2 + 3HNO3

CH3CHCOOH + 2NO +

2H2O

ONO2
Propilen

As.Nitrat

α-nitrolaktat

Nitrogen monoksida

Air

13
Universitas Sumatera Utara

CH3CHCOOH + 5/2 O2

(COOH)2 + CO2 + HNO3 + H2O

ONO2
α-nitrolaktat

Oksigen

As.Oksalat Karbon dioksida As.Nitrat

Air

Pada langkah pertama, propilen dicampurkan pada suhu 10-40 oC dengan
asam nitrat, konsentrasi dijaga pada 50-75 % dan perbandingan rasio molar
untuk propilena 0,01-0,5 hingga terkonversi menjadi asam α-nitrolaktat dan
asam laktat. Pada tahap kedua asam α-nitrolaktat teroksidasi oleh oksigen
dengan adanya katalis pada suhu 45-100 oC untuk menghasilkan asam oksalat
dihidrat. Secara keseluruhan dengan konsentrasi propilen lebih besar dari 90%
diperoleh konversi propilen 77,5% [21].

4. Proses Dialkil Oksalat
Asam oksalat dihasilkan dengan hidrolisis diester asam oksalat dengan gas CO
dengan produk samping alkohol. Pada tahun 1978 UBE Industries (Jepang)
mengkomersialisasikan proses dua-langkah ini.
Sintesis pertama yang dilaporkan dengan menggunakan contoh PdCl2 - CuCl2
dalam sistem redoks dengan persamaan reaksi berikut :

2CO

+ 2ROH + ½ O2

Karbon Dioksida

(COOR)2

Alkohol

Oksigen

+ H2 O

Dialkil Oksalat

(COOR)2 +

H2O

Dialkil Oksalat

Air

(COOH)2 + 2ROH

Air

As.Oksalat

Alkohol

5. Proses Peleburan Alkali
Pembuatan asam oksalat dengan proses peleburan alkali dilakukan
menggunakan bahan baku yang mengandung selulosa tinggi seperti serbuk
gergaji, sekam padi, tongkol jagung, dan lain-lain. Bahan ini dilebur dengan alkali
hidroksida seperti natrium hidroksida atau kalsium hidroksida pada suhu 240 –
285 ºC. Produk yang

diperoleh

direaksikan

dengan

asam sulfat untuk

membentuk asam oksalat dan kalsium sulfat [21].
14
Universitas Sumatera Utara

Berikut

reaksi-reaksi

yang

terjadi

pada

proses

peleburan

alkali

menggunakan Ca(OH)2:
2(C6H10O5)n + 3n Ca(OH)2 + 13/2n O2
Selulosa

Kalsium Hidroksida

n CaC2O4 + n Ca (CH3COO)2 +

Oksigen

Kalsium Oksalat

Kalsium Asetat

n Ca(COOH)2 + 9 n H2O + 4n CO2
Kalsium Formiat

CaC2O4

+

Air

Karbon dioksida

H2SO4

C2H2O4

Kalsium Oksalat

As. Sulfat

+

CaSO4

Asam Oksalat

Kalsium Sulfat

Kemurnian dari proses peleburan alkali adalah sebesar 60 % [21].

6. Fermentasi Glukosa
Asam oksalat dapat dihasilkan dengan menggunakan proses fermentasi gula
dengan menggunakan jamur (seperti Aspergillum atau Penicillium) sebagai
pengurainya. Produk yang diperoleh kemudian disaring, diasamkan dan
dihilangkan warnanya. Setelah itu, produk dinaikkan konsentrasinya dengan
evaporator dan hasilnya dikristalkan. Kemudian dilakukan pengeringan untuk
memisahkan produk dengan airnya. Hasil dari asam oksalat tergantung dari
nutrient (nitrogen) yang ditambahkan. Berikut Tabel 2.3 yang menunjukkan
perbedaan dari beberapa metode sintesis asam oksalat secara ringkas.

Tabel 2.3 Perbedaan Keuntungan dan Kerugian pada Berbagai Proses Sintesis
Asam Oksalat

Metode
1. Oksidasi
Karbohidrat

Keuntungan


Dihasilkan asam
oksalat dalam jumlah
besar (yield 63-65 %).

Kerugian




2. Etilen Glikol



Dihasilkan asam
oksalat dalam jumlah
besar (yield > 90 %).



Bahan bakunya mahal
seperti tepung tapioka,
tepung jagung dan lainlain.
Diperlukan katalis
tertentu yaitu
V2O5/Fe3+.
Menggunakan bahan
baku yang mahal, yaitu
etilen glikol.

15
Universitas Sumatera Utara

3. Proses Propilen



4. Proses Dialkil
Oksalat



5. Proses
Peleburan
Alkali





6. Fermentasi
Glukosa



Dihasilkan asam
oksalat dalam jumlah
besar (yield 75 %
Selain menghasilkan
asam oksalat, juga
dihasilkan alkohol
sebagai produk
samping yang
memiliki nilai
ekonomi
Bahan yang digunakan
tersedia dalam jumlah
yang cukup banyak,
seperti sabut kelapa,
serbuk gergaji, sekam
padi, dll.
Proses yang digunakan
cukup sederhana yaitu
hanya dengan
penambahan alkali
hidroksida, Ca(Cl)2,
dan H2SO4.
Bahan utama yang
berasal dari
karbohidrat mudah
didapat.



Menggunakan proses
yang cukup sulit.



Menggunakan proses
yang kompleks.



Kemurnian asam oksalat
yang dihasilkan sebesar
60%



Prosesnya yang cukup
panjang yaitu gula
difermentasikan
terlebih dahulu dengan
menggunakan jamur
aspergillus atau
penicillium.

2.3.2 KEGUNAAN ASAM OKSALAT
Terdapat beberapa kegunaan asam oksalat di dalam industri, yaitu [22]:
1.

Perawatan Logam (Metal Treatment)
Asam oksalat digunakan pada industri logam untuk menghilangkan
kotoran-kotoran yang menempel pada permukaan logam yang akan dicat. Hal
ini dilakukan karena kotoran tersebut dapat menimbulkan korosi pada
permukaan logam setelah proses pengecatan selesai dilakukan.

2.

Pelapisan dengan Oksalat (Oxalate Coatings)
Pelapisan oksalat telah digunakan secara umum karena asam oksalat
dapat digunakan untuk melapisi logam stainless steel, nickel alloy, kromium,
16
Universitas Sumatera Utara

dan titanium. Sedangkan pelapisan dengan senyawa lain seperti fosfat tidak
dapat bertahan lama apabila dibandingkan dengan menggunakan pelapisan
oksalat.
3.

Anodizing
Proses pelapisan menggunakan asam oksalat dikembangkan di Jepang
dan dikenal lebih jauh di Jerman. Pelapisan asam oksalat menghasilkan tebal
lebih dari 60 μm dapat diperoleh tanpa menggunakan teknik khusus.
Pelapisannya bersifat keras, abrasif, tahan terhadap korosi, dan cukup atraktif
warnanya sehingga tidak diperlukan pewarnaan. Tetapi bagaimanapun juga,
proses

pelapisan

menggunakan

asam

oksalat

lebih

mahal

apabila

dibandingkan dengan proses asam sulfat.
4.

Pembersihan Baja (Metal Cleaning)
Asam oksalat adalah senyawa pembersih yang digunakan untuk otomotif
radiator, boiler, railroad cars, dan kontaminan radioaktif untuk reaktor pada
proses pembakaran. Dalam membersihkan logam besi dan non besi, asam
oksalat menghasilkan kontrol pH sebagai indikator yang baik. Banyak
industri

yang

mengaplikasikan

cara

ini

berdasarkan

sifatnya

dan

keasamannya.
5.

Pembersihan Zat Warna Tekstil (Textiles)
Asam oksalat banyak digunakan untuk zat warna. Dalam pencucian,
asam oksalat digunakan sebagai zat asam, kunci penetralan alkali, dan
melarutkan besi pada pewarnaan tenun pada suhu pencucian. Selain itu, asam
oksalat juga digunakan untuk membunuh bakteri yang ada pada kain.

6.

Pewarnaan Wool (Dyeing)
Asam oksalat dan garamnya juga digunakan untuk pewarnaan wool.
Asam oksalat sebagai agen pengatur kromium florida. Mordan yang terdiri
dari 4% kromium florida dan 2 % berat asam oksalat. Wool dididihkan dalam
waktu 1 jam. Kromium oksida pada wool diangkat dari pewarnaan.
Ammonium oksalat juga digunakan sebagai pencetakan Vigoreus pada wool,
dan juga terdiri dari mordan (zat kimia) pewarna.

2.4 FAKTOR-FAKTOR YANG MEMPENGARUHI PEMBUATAN ASAM
OKSALAT
17
Universitas Sumatera Utara

Beberapa faktor yang berpengaruh dalam pembuatan asam oksalat adalah:
a. Waktu
Semakin lama waktu reaksi, maka waktu kontak antara zat-zat tersebut akan
semakin lama sehingga reaksi akan semakin mendekati sempurna. Tetapi jika
waktu reaksi terlalu lama dapat menyebabkan reaksi berlanjut ke arah reaksi yang
tidak diinginkan.
b. Temperatur
Hubungan antara temperatur dan kecepatan reaksi dinyatakan oleh
persamaan Arrhenius sebagai berikut:
k = ko .e(-E/RT)
dengan:
k = tetapan laju reaksi
ko= faktor frekuensi
E = energi aktivasi
R = tetapan gas = 8,314 Joule/mol. K = 1,987 kal/mol. K
Setiap kenaikan temperatur akan memberikan kenaikan harga k. Semakin
besar harga k, maka kecepatan reaksi akan semakin besar pula. Tetapi apabila
temperatur terlalu tinggi maka akan menyebabkan perubahan yang tidak
diinginkan pada asam oksalat.
c. Komposisi dan Konsentrasi
Komposisi suatu bahan dan adanya zat inert sangat berpengaruh terhadap
kecepatan reaksi. Suatu reaksi biasanya dapat berubah menjadi produk dengan
cepat apabila direaksikan dengan konsentrasi yang tinggi, tetapi itu tidak berlaku
pada semua reaksi, sehingga perlu dicari perbandingan yang baik.
d. Pengadukan
Pengadukan dapat memperbesar frekuensi tumbukan antara zat-zat
pereaksi sehingga reaksi akan berlangsung lebih cepat [10].

18
Universitas Sumatera Utara