Studi Sifat Mekanik Rubber H pada Berbagai Komposisi Karet Alam, Karet Sintetis, Carbon Black dan Fly Ash

  Prosiding Seminar Nasional Kulit, Karet dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  

Studi Sifat Mekanik Rubber H pada Berbagai Komposisi Karet Alam,

Karet Sintetis, Carbon Black dan Fly Ash

Nasruddin

  

Balai Riset dan Standardisasi Industri Palembang

Jl. Perindustrian II. No. 12. Palembang 30152

  • *Penulis korespondensi. Telp. +62 711 412482

    E-mail

  ABSTRAK

  Penelitian ini mempelajari sifat mekanik rubber H dari komposit karet alam, karet sintetis (styrene-

  

butadiane rubber; dan chloroprene rubber), carbon black, dan fly ash. Formula rubber H terdiri

  dari 3 perlakuan (A; B; dan C), masing-masing bahan pembentuk rubber H dengan variasi : karet alam (60; 70; dan 80) phr, styrene-butadiane rubber (20; 15; dan 10) phr, clhoroprene rubber (20; 15; dan 10) phr. Bahan pengisi penguat carbon black (52; 54; dan 56) phr, fly ash (5; 8; dan 10) phr. Proses pembuatan kompon rubber H dilakukan dengan menggunakan open mill pada temperature

  o o o o

  45 C ± 2

  C. Kompon yang terbentuk dilakukan pencetakan pada temperature 145 C ± 2 C selama 18 menit. Hasil pengujian rubber H menunjukkan untuk specific gravity 1,716; hardness 75 shore

3 A; abrasi 28 mm compression set 22%. Hasil pengujian ketahanan ozon untuk semua perlakuan tidak mengalami kerusakan fisik.

  Kata kunci: karet alam, styrene-butadiane rubber; chloroprene rubber, rubber

  Prosiding Seminar Nasional Kulit, Karet, dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  

Study of Mechanical Properties of Rubber H in Various Natural Rubber

Composition, Synthetic Rubber, Carbon Black and Fly Ash

Nasruddin*

  

Balai Riset dan Standardisasi Industri Palembang

Jl. Perindustrian II. No. 12. Palembang 30152

  • *Coresponding author. Telp. +62 711 412482

    E-mail

  ABSTRACT

The objective of the research was to study the mechanical properties of rubber H from natural

rubber composite, synthetic rubber (styrene-butadiene rubber and chloroprene rubber), carbon

black, and fly ash. The formula rubber H consists of 3 treatments (A, B and C) namely variations:

of natural rubber (60; 70 and 80) phr, styrene-butadiene rubber (20; 15;10) phr, clhoroprene

rubber (20; 15; and 10) phr, reinforcing fillers such as carbon black (52; 54; and 56) phr, fly ash

(5; 8; and 10) phr. The process of making compound rubber H is conducted using an open mill at

temperatures of 45°C ± 2°C. The heating of the vulcanizates was at temperatures of 145°C ± 2°C

for 18 minutes. The result of test rubber H shows for specific gravity 1.716; hardness 75 ShoreA;

  3

abrasion 28 mm compression set 22%. Test results of ozone resistance for all treatments did not

suffered any physical damage.

  Keywords: natural rubber, styrene-butadiane rubber; chloroprene rubber, rubber

  Prosiding Seminar Nasional Kulit, Karet dan Plastik ke-7 Yogyakarta, 29 Agustus 2018 PENDAHULUAN

  Rubber H merupakan salah satu komponen yang terdapat pada belt conveyor untuk tambang batubara. Rubber H penggunaannya ditempatkan di dalam gear box snelling pada belt conveyor.

  Sifat mekanik dan ketahanan rubber H ditentukan oleh rasio bahan, cara proses, homogenitas campuran bahan pada saat proses vulkanisasi, waktu, dan temperatur pencetakan. Homogenitas campuran polimer dengan bahan ditentukan oleh energi bebas yang terjadi pada saat proses pencampuran. Pencampuran dua polimer atau lebih yang tidak kompatibel akan menghasilkan komposit bahan dengan sifat mekanik yang buruk (Ramesan et al., 2001).

  5

  8 Karet alam merupakan polimer isoprena (C H ) diperoleh dari pohon Hevea Brasiliensis

  adalah bentuk alamiah dari 1,4

  • –polyisoprene yang banyak digunakan untuk berbagai aplikasi (Alam dan Teuku, 2007). Hal ini disebabkan sifat mekanik dan elastisitasnya sangat baik (Pangdong et al., 2015; Amnuaypornsri et al., 2009; Pocut, dan Rihayat., 2007). Karet alam sebagai salah satu bahan komposit utama untuk barang jadi karet memiliki sifat mekanik yang sangat baik antara lain untuk parameter kuat tarik (tensile strength), modulus, kuat sobek (tear strength) dan kekerasan (hardness) (Ismail et al., 2001; Yahya et al., 2013). Karet alam sebagai polimer alami selain mempunyai keunggulan, pada keadaan tertentu mengalami kelemahan. Kelemahan karet alam antara lain tidak tahan terhadap bahan kimia, pelarut organik, serangan ozon, perubahan cuaca, oksigen, sinar matahari, sinar UV, dan kelembaban (Phanny et al., 2012; Norma dan Fathurrohman, 2017).

  Untuk meningkatkan sifat mekanik karet alam sebagai komposit rubber H ditambahkan karet sintetis dari jenis styrene-butadiane rubber, chloroprene rubber, carbon black, fly ash dengan waktu proses yang optimum. Karet sintetis yang ditambahkan pada karet alam dengan tujuan untuk meningkatkan sifat mekanik dan melengkapi kelemahan karet alam. Karet sintetis yang ditambahkan untuk kompon rubber H dari jenis stirena-butadiena (SBR) dan chloroprene (CR).

  Stirena butadiena merupakan kopolimer dari stirena (C

  6 H

  5 CH=CH 2 ) dan butadiena (CH

  2

  =CH ΜΆ

2 CH=CH ) yang mempunyai ketahanan terhadap penuaan, tahan terhadap perubahan suhu, dan

  mempunyai ketahanan yang baik terhadap abrasi (Ahmed et al., 2015; dan Baeta et al., 2009). Baeta

et al. (2009) melaporkan komposit SBR dengan NBR dapat meningkatkan kuat tarik hingga 70 phr.

Komposit karet alam, karet sintetis, bahan pengisi dan bahan proses lainnya merupakan interaksi antar molekul-molekul campuran yang saling melengkapi dan saling mengikat guna memperkuat struktur produk yang dihasilkan.

  Prosiding Seminar Nasional Kulit, Karet, dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Peningkatan sifat mekanik rubber H dapat dilakukan dengan menambahkan karet sintetis jenis khloroprena. Komposit karet alam dengan karet sintetis dari jenis stirena butadiena dan khloroprena dimaksudkan untuk meningkatkan ketahanan rubber H terhadap beban, abrasi, ketahanan minyak, serangan ozon, perubahan cuaca, dan panas.

  Khloroprena mempunyai sifat elastisitas yang baik, tahan terhadap minyak, pelarut organik, tahan terhadap keusangan, tahan panas, tahan terhadap serangan oksigen, abrasi, ozon, flex

  

cracking, senyawa alkalis, asam dan tahan terhadap api (Murugesan et al., 2015). Penggunaan

  khloroprena telah dilakukan oleh para peneliti sebelumnya bertujuan untuk meningkatkan sifat mekanik barang jadi karet. Rubber H yang terbuat dari komposit karet alam, karet sintetis, dan antidegradan mempunyai kemampuan untuk bertahan terhadap pengaruh lingkungan dan perubahan cuaca yang ekstrem. Pengembangan karet alam menjadi rubber H pada penelitian ini dilakukan dengan penambahan bahan pengisi penguat dari jenis carbon black dan bahan pengisi penambah volume berupa fly ash.

  Carbon black telah banyak digunakan untuk berbagai produk barang jadi karet yang berfungsi

  sebagai bahan pengisi penguat. Menurut Ismail et al. (2005) dan Vargas et al. (2016) carbon black sangat cocok sebagai bahan pengisi penguat untuk karet alam. Carbon black sebagai bahan pengisi penguat pada karet alam dapat meningkatkan struktur karet alam, karena mempunyai permukaan hidrofobik sebagai bahan pengisi yang cocok dengan permukaan hidrofobik karet alam (Savetlana

  et al., 2017; dan Onyeagoro, 2012).

  Menurut Dechojarassri et al. (2017) komposit karet alam dengan carbon black dapat meningkatkan kekuatan tarik hingga 18 MPa. Fly ash yang berasal dari abu terbang batubara merupakan hasil pembakaran batubara dengan ukuran partikel 0,075 mm (Pratama et al., 2007). Ukuran partikel fly ash berpengaruh terhadap sifat mekanik barang jadi karet terutama hardness, dan spesific grafity. Lestiani et al. (2010) dan Ghofur et al. (2014) melaporkan fly ash mengandung unsur silika. Cifriadi dan Maspanger (2005) melaporkan fly ash dari pembakaran batubara dengan ukuran partikel 300 mesh dapat meningkatkan kekerasan vulkanisat kompon karet. Fly ash sebagi

  

filler komposit karet dari hasil para peneliti terdahulu mengandung unsur silika. Kandungan silika

  yang terdapat dalam fly ash 53,50% dengan porositas 13,61% (Stefano, 2010; dan Seny et al., 2011). Kandungan silika yang terdapat dalam fly ash berperan aktif meningkatkan ikatan antar molekul kompon karet.

  Penelitian ini mempelajari sifat mekanik rabber H dari komposit karet alam, karet sintetis dari jenis stirena-butadiena, khloroprena, carbon black, dan fly ash. Untuk mengetahui sifat mekanik

  

rubber H dilakukan pengujian dengan parameter yang meliputi specific gravity, hardness, abrasi,

compression set, dan ketahanan ozon.

  Prosiding Seminar Nasional Kulit, Karet dan Plastik ke-7 Yogyakarta, 29 Agustus 2018 BAHAN DAN METODE Bahan dan Alat

  5

  5. STA phr 2,45 2,45 2,45

  6. CB phr

  52

  54

  56

  7. Fly Ash phr

  8

  10

  10

  8. PEG phr 3,85 3,85 3,85 9.

  6.PPD phr 1,25 1,25 1,25

  10. Antioxidant Wax phr 4,75 4,75 4,75

  11. DOP phr 4,85 4,85 4,85

  12. DPG phr 0,45 0,45 0,45

  13. MBTS phr 0,85 0,85 0,85

  4. ZnO phr 5,25 5,25 5,25

  15

  Bahan yang digunakan untuk penelitian ini terdiri dari karet alam (SIR-20), karet sintetis dari jenis stirena-butediena (SBR) dan khloroprena (CR), zink oksida (ZnO), stearid acid (STA), carbon

  1. Karet Alam phr

  

black (CB-N330), fly ash, polietilena glikol 4000 (PEG-4000), 6.PPD, parrafin wax, DOP, DPG,

MBTS, dan Sulfur.

  Alat yang digunakan terdiri dari neraca, neraca analitis, open mill, molding untuk mencetak specimen, dan thermometer infrared.

  Rancangan Percobaan

  Penelitian ini dilakukan dengan 3 (formula) seperti terlihat pada Tabel 1. Rubber H yang dihasilkan dilakukan pengujian yang meliputi : specific gravity dengan metode uji ASTM D 624,

  

hardness shore A metode uji ASTM D 2240, abrasi metode uji ASTM D 5963, compression set

metode uji ASTM D 395, dan ozon resistance metode uji SNI.7655-2010.

  Tabel 1. Formula Rubber H No Bahan Formula A B C

  60

  20

  70

  80

  2. SBR phr

  20

  15

  10

  3. CR phr

  14. Sulfur phr 2,65 2,65 2,65

  Prosiding Seminar Nasional Kulit, Karet, dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Prosedur

  Karet alam dimastikasi dengan cara penggilingan pada open mill, selanjutnya ditambahkan karet sintetis terus digiling sampai campuran karet alam dan karet sintetis homogen. Setelah campuran homogen, sambil terus digiling tambahkan activator, co-activator. Sambil terus digiling tambahkan bahan pelunak bahan pengisi, bahan pencepat, antidegradan. Setelah semua bahan homogen dan terdistribusi secara sempurna keseluruh bagian komposit karet alam dan karet sintetis tambahkan sulfur sampai semuanya homogen. Kompon yang terbentuk dilakukan pencetakan pada

  o o

  temperature 145 C ± 2 C selama 18 menit. Rubber H yang dihasilkan seperti terlihat pada Gambar 1 berikut ini.

  

Gambar 1. Rubber H dari komposit karet alam, karet sintetis dengan bahan pengisi carbon black

  dan fly ash

HASIL DAN PEMBAHASAN

  Specific gravity

  Hasil pengujian specific gravity seperti terlihat pada Gambar 2 menunjukkan perbedaan dari masing-masing formula (A; B, dan C).

  

Gambar 2. Pengaruh komposit karet alam, karet sintetis dengan bahan pengisi terhadap specific

gravity

  Prosiding Seminar Nasional Kulit, Karet dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Perbedaan nilai specific gravity untuk masing-masing formula dipengaruhi oleh perbedaan rasio bahan yang ditambahkan (Tabel 1). Specific gravity untuk formula C nilainya lebih tinggi (1,716) dibandingkan dengan formula yang lainnya. Untuk formula C dilihat dari jumlah rasio bahan yang ditambahkan 192,35 phr lebih besar dari formula yang lainnya, sementara untuk formula A jumlah rasio bahannya 183,35 phr, dan formula B 188,35 phr.

  Masing-masing bahan yang ditambahkan antara lain seperti karet alam, karet sintesis, carbon

  

black, fly ash dengan jumlah phr yang berbeda memberikan kontribusi terhadap perbedaan nilai

specific gravity. Pengaruh perbedaan rasio bahan antara lain seperti carbon black sesuai dengan

  nilai specific gravity-nya dengan rasio yang ditambahkan (Tabel 1) memberikan kontribusi terhadap perbedaan nilai specific gravity rubber H yang dihasilkan (Gambar 2). AL-Nesrawy et al. (2014) melaporkan dari hasil penelitiannya, peningkatan rasio carbon black yang ditambahkan pada kompon karet diikuti dengan perubahan nilai hardness, specific gravity dan sifat mekanik yang lainnya. Hal ini menunjukkan, perbedaan rasio campuran berpengaruh terhadap perbedaan sifat mekanik produk yang dihasilkan.

  Perbedaan nilai specific gravity antar perlakuan berkaitan dengan perbedaan sifat mekanik

  

rubber H yang dihasilkan. Perbedaan rasio karet alam, karet sintetis, carbon black dan flay ash

  (Tabel 1) dari hasil pengujian pada penelitian ini mempunyai kontribusi terhadap perbedaan nilai

  

specific gravity rubber H. Nilai specific gravity menggambarkan tingkat kerapatan crosslink antar

  molekul-molekul yang membentuk bahan. Menurut Zhao et al. (2011) vulkanisat karet alam dengan kepadatan crosslink yang berbeda berpengaruh terhadap sifat mekanik vulkanisat karet alam yang dihasilkan.

  Perbedaan tingkat kerapatan crosslink disebabkan oleh rasio bahan pembentuk kompon karet yang berhubungan langsung dengan nilai hardness. Rasio bahan pembentuk vulkanisat termasuk bahan pengisi berpengaruh terhadap kecepatan reaksi sambung silang, dimana tiap bagian molekul bahan pengisi akan menempati ruang yang mempengaruhi kecepatan reaksi sambung silang dan kerapatan crosslink. Fly ash sesuai dengan rasionya sebagai bahan pengisi tidak aktif pada saat proses vulkanisasi berlangsung dengan bantuan PEG sebagai coupling egent bersama dengan bahan lainnya (Tabel 1) tersisipkan pada setiap bagian molekul-molekul komposit karet alam dan karet sintetis. Menurut Nasruddin et al. (2014) pengembangan formula dari komposit karet dengan

  

coupling agent jenis PEG 400 dan Si 69 terjadi percepatan distribusi fly ash yang ditambahkan lebih

  sempurna pada vulkanisat yang dihasilkan. Dengan adanya fly ash yang tersisipkan kedalam molekul-molekul komposit karet alam dan karet sintetis berdampak pada terganggunya efektivitas reaksi vulkanisasi.

  Prosiding Seminar Nasional Kulit, Karet, dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Karet sintetis dari jenis stirena-butadiena dan khloroprena yang dikomposit dengan karet alam pada open mill bersama dengan carbon black, fly ash dan bahan proses lainnya (Tabel 1) dengan rasio dan tingkat homogenitasnya berpengaruh terhadap sifat mekanik rubber H seperti pemampatan tetap. Tingkat homogenitas campuran bahan kedalam komposit styrene-butadiane

  

rubber dan chloroprene rubber dipengaruhi oleh bahan pelunak (DOP) dan PEG sebagai coupling

agent. Penambahan coupling agent dengan tujuan untuk merubah permukaan material penguat

  menjadi hydrophobic dengan ikatan antar gugus hidroksil (Prasetyo et al., 2013). Bahan pelunak yang ditambahkan bersama dengan coupling agent pada saat proses vulkanisasi akan meregangkan molekul-molekul karet alam dan karet sintetis. Menurut Nasruddin et al. (2014) penambahan

  

coupling agent dapat meregangkan molekul karet sehingga terjadi interaksi antara fly ash dengan

polimer.

  Peregangan molekul-molekul karet alam dan karet sintetis memudahkan seluruh bahan proses terdistribusi secara merata kedalam komposit karet alam dan karet sintetis. Dengan demikian berdampak pada tingkat kerapatan yang tinggi dan terbentuknya ikatan antar molekul yang kokoh.

  Kekerasan

  Hasil pengujian tingkat kekerasan (hardness) rubber H seperti pada Gambar 3 menunjukkan adanya perbedaan antar perlakuan. Perbedaan tingkat kekerasan hal ini disebabkan oleh perbedaan rasio bahan untuk masing-masing formula (Tabel 1). Untuk formula C berdasarkan hasil pengujian tingkat kekerasan lebih tinggi (75 Shore A) dibandingkan dengan formula A dan Formula B. Sementara untuk formula A tingkat kekerasannya 69 Shore A lebih rendah dari formula B dan formula C. Tingkat kekerasan rubber H dari 3 (tiga) formula dipengaruhi juga oleh tingkat kerapatan dan homogenitas bahan yang terdistribusi kedalam molekul-molekul komposit karet alam dan karet sintetis.

  Pengaruh komposit karet alam, karet sintetis dengan bahan pengisi terhadap hardness Gambar 3.

  Prosiding Seminar Nasional Kulit, Karet dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Perbedaan tingkat kekerasan rubber H dari masing-masing formula (A, B, dan C) selain dipengaruhi oleh rasio bahan dan homogenitas bahan yang terdistribusi kedalam molekul-molekul karet alam, karet sintetis, dipengaruhi juga oleh bahan pelunak yang digunakan. Perbedaan tingkat kekerasan dipengaruhi juga oleh luas permukaan carbon black dan fly ash sebagai filler. Hamzah dan Asia (2013) melaporkan, jumlah luas permukaan yang lebih besar akan memberikan tingkat ikatan silang yang tinggi dimana ikatan silang memiliki efek yang besar pada nilai kekerasan elastomer.

  Data hasil pengujian menunjukkan komposit karet alam, karet sintetis yang diperkuat dengan bahan pengisi penguat carbon black dan fly ash berpengaruh terhadap perbedaan sifat mekanik terutama nilai kekerasan. Rasio karet alam, karet sintetis, carbon black bersama fly ash berdasarkan data dari Tabel 1, dan Gambar 3 memberikan kontribusi terhadap perubahan nilai kekerasan. Menurut Phanny et al. (2012) carbon black sebagai filler aktif yang ditambahkan ke dalam komposit karet alam pada saat proses vulkanisasi berlangsung sampai dengan 30 phr berdampak pada peningkatan nilai kekerasan hingga 58,0 Shore A. Menurut Ghosh dan Chakrabati, (2000) penambahan carbon black hingga 40 phr dapat meningkatkan sifat mekanik barang jadi karet yang dihasilkan.

  Ketahanan abrasi

  Ketahanan abrasi (abrasion resistance) menggambarkan tingkat ketahanan produk terhadap gesekan dengan benda lain, dimana pada saat yang bersamaan terjadi kehilangan bagian permukaan bahan akibat gesekan. Hasil pengujian tingkat abrasi terhadap rubber H dari tiga formula (A; B dan

  3 C), bagian yang mengalami abrasi yang lebih banyak (31 mm ) dari formula B, sementara untuk

  3

  3

  formula A abrasinya 25 mm , formula C abrasinya adalah 28 mm . Gambar 4 berikut ini memperlihatkan tingkat abrasi dari 3 (tiga) formula.

  Gambar 4. Pengaruh komposit karet alam, karet sintetis dengan bahan pengisi terhadap abrasi

  Prosiding Seminar Nasional Kulit, Karet, dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Perbedaan ketahanan abrasi rubber H yang dihasilkan berhubungan langsung dengan kekuatan ikatan antar molekul yang membentuknya. Kekuatan ikatan antar molekul dapat dipengaruhi oleh perbedaan rasio komposit karet alam dengan karet sintetis dan bahan proses lainnya yang digunakan (Tabel 1).

  Ketahanan abrasi rubber H terjadi ketika ada gesekan dengan benda lain maka pada bagian permukaan ikatan antar molekulnya yang lemah akan mengalami keausan (kehilangan bagian permukaan). Interaksi antar molekul-molekul carbon black, fly ash dan bahan lainnya (Tabel 1) dengan molekul-molekul karet alam dan karet sintetis turut berkontribusi terhadap ketahanan abrasi. PEG dan DOP yang ditambahkan pada saat proses vulkanisasi berperan aktif untuk meningkatkan kinerja carbon black dan fly ash hingga terdispersi dan terdistribusi secara baik dalam matriks karet dan karet sintetis.

  Proses pencetakan kompon menjadi produk merupakan titik kritis untuk menentukan kualitas produk. Dimana pada saat proses pencetakan terjadi pemuaian bahan pembentuk rubber H oleh pengaruh panas, selanjutnya akan mengalami pengerasan seiring dengan penurunan temperatur. Pada saat vulkanisasi dan pematangan kompon terjadi peristiwa pembentukan jaringan tiga dimensi yang memperkuat ikatan antar molekul yang semakin kokoh. Terbentuknya ikatan antar molekul dipengaruhi oleh rasio bahan, waktu vulkanisasi, peran aktif dari bahan pengisi, dan waktu pematangan. Carbon black dan fly ash merupakan bahan pengisi saling melengkapi yang mengisi bagian dari molekul-molekul karet alam dan karet sintetis. Menurut Aguele et al. (2014) carbon black sebagai filler penguat pada rasio yang optimum mempunyai peran aktif terhadap ketahanan abrasi.

  Pemampatan tetap

  Hasil pengujian pemampatan tetap (compression set) untuk masing-masing formula seperti terlihat pada Gambar 5 memperlihatkan adanya perbedaan antar perlakuan.

  

Gambar 5. Pengaruh komposit karet alam, karet sintetis dengan bahan pengisi terhadap

  pemampatan tetap

  Prosiding Seminar Nasional Kulit, Karet dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Pemampatan tetap (compression set) antara lain berhubungan dengan tingkat kekerasan,

  

specific gravity, elastisitas dari rasio bahan yang ditambahkan. Dimana dengan tingkat kekerasan

  dan specific gravity serta tingkat elastisitas yang tinggi maka gaya yang bekerja untuk memampatkan benda akan mengalami hambatan karena terjadi perlawan dari molekul-molekul bahan yang membentuknya (Tabel 1). Hambatan yang terjadi pada saat terjadi pemampatan, hal ini dapat disebabkan oleh kerapatan jumlah molekul bahan pembentuk vulkanisast per satuan volume dan tingkat elastisitas bahan pada saat menahan beban untuk kembali pada keadaan semula, atau pada keadaan yang mendekati keadaan semula. Kerapatan jumlah molekul pembentuk rubber H per milimeter kubik dapat digambarkan dari hasil pengujian specific gravity.

  Komposit karet alam dan karet sintetis pada rasio seperti terlihat pada Tabel 1 dan Gambar 5 berpengaruh terhadap sifat mekanik rubber H yang dihasilkan. Karet sintetis yang ditambahkan untuk rubber H pada penelitian ini dapat memperbaiki sifat mekanik rubber H yang dihasilkan. Dimana karet sintetis yang ditambahkan dapat meningkatkan ketahanan rubber H terhadap minyak panas, ozon dan tahan terhadap keusangan. Menurut Kinasih dan Faturrohman, (2016) chloroprene

  

rubber yang ditambahkan berfungsi sebagai kompatibiliser yang berperan aktif untuk memperbaiki

sifat mekanis terutama pemampatan tetap dan ketahanan terhadap panas.

  Pemampatan tetap jika dilihat dari perbedaan rasio karet alam, karet sintetis, carbon black dan

  

fly ash (Table 1) memperlihatkan bahwa kenaikan rasio karet alam, carbon black, dan fly ash

  berpengaruh terhadap perubahan nilai specific gravity, hardness, ketahanan abrasi dan compression

  

set. Menurut Ali et al. (2017) komposit karet alam, chloroprene rubber, carbon black berpengaruh

  terhadap sifat mekanik produk yang dihasilkan. Hal ini sejalan dengan hasil penelitian ini, dimana setiap perubahan rasio bahan (Tabel 1) berpengaruh terhadap perubahan sifat mekanik rubber H yang dihasilkan (Gambar 2, 3, 4, dan Gambar 5).

  Ketahanan ozon

  Serangan ozon berpengaruh terhadap sifat mekanik dan umur pakai dari suatu produk, dimana umumnya suatu produk yang mendapat serangan ozon pada bagian pemukaannya akan mengalami keretakan permanen. Serangan ozon dapat dilindungi dengan antidegradan. Rubber H yang dilindungi dengan antidegradan dari jenis 6.PPD dan paraffin wax pada penelitian ini setelah

  o

  dilakukan pengujian dengan diberi paparan ozon 50 pphm, 20% strain, pada temperature 40 C selama 24 jam tidak mengalami keretakan fisik untuk ke 3 (tiga) sampel yang diuji. Datta et al. (2007) menyampaikan laporan dari hasil penelitiannya bahwa penggunaan 6.PPD pada pembuatan kompon karet dapat mempertahankan produk dari serangan ozon.

  Prosiding Seminar Nasional Kulit, Karet, dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  KESIMPULAN

  Komposit karet alam, karet sintetis, carbon black, dan fly ash dari 3 perlakuan (A; B; dan C) pada penelitian berpengaruh terhadap perbedaan sifat mekanik rubber H yang dihasilkan. Formula

  

rubber H untuk perlakuan A menghasilkan specific gravity 1,716; hardness 75 Shor A; abrasi 28

  3

  mm compression set 22%. Hasil pengujian ketahanan ozon untuk semua perlakuan tidak mengalami kerusakan fisik terhadap rubber H yang dihasilkan.

UCAPAN TERIMA KASIH

  Ucapan terima kasih disampaikan kepada Kepala Balai Riset dan Standardisasi Industri Palembang, Kepala Balai Besar Kulit Karet dan Plastik yang telah menyelenggarakan Seminar Kulit Karet Plastik Tahun 2018. Direktur PT. Shima Prima Utama beserta teknisi yang membantu kegiatan penelitian. Direktur CV. Putra Tekedum Rubber Industry Tanjung Enim Kabupaten Muara Enim Provinsi Sumatera Selatan perusahaan Industri Ruber H beserta teknisi yang telah membantu memberikan informasi teknis dan penggunaan rubber H untuk belt compeyor.

DAFTAR PUSTAKA

  Ahmed, J. K., Mohammed, H., Al-Maamori, and Hajir, M. A. (2015). Effect of nano silica on the mechanical properties of Styrene-butadiene rubber (SBR) composite. International Journal of

  Materials Science and Applications, 4(2-1),15-20. Doi: 10.11648/j.ijmsa.s.2015040201.14.

  Alam, P. A., dan Teuku. R. (2007). Sintesa dan Karakteristik Sifat Mekanik Karet Nanokomposit.

  Jurnal Rekayasa Kimia dan Lingkungan, 6(1), 1-6.

  AL-Nesrawy, S. H., Mohammed, A., Hassani, A. S., and Harith, I. J. (2014). Effect of mixture of Reclaimed tire and Carbon Black Percent on the Mechanical properties of SBR/NR blends.

  International Journal of Advanced Research, 2(3), 234-243.

  Ali, N. K. A., Farhan, M. M., and Moosa, A. S. (2017). Improvement of Mechanical and Rheological Properties of Natural Rubber for Anti-Vibration Applications. Al-Khwarizmi Engineering Journal, 13(1), 20-27.

  Amnuaypornsri, S., Lucksanaporn, T., Jitladda, T., and Sakdapipanich. (2010). Character of Long- Chain Branching in Highly Purified Natural Rubber. Journal of Applied Polymer Science,

  115, 3645 –3650. DOI 10.1002/app.31419.

  Baeta, D. A., Zattera, J. A., Oliveira, M. G., and Oliveira, P. J. (2009).The Use of Styrene- Butadiene Rubber Waste as a Potential Filler in Nitrile Rubber: Order of Addition and Size of Waste Particles the Use of Styrene-Butadiene Rubber Waste as a Potential Filler In Nitrile Rubber. Order of Addition and Size of Waste Particles, 26(01), 23

  • – 31. DOI: 10.1590/S0104- 66322009000100003.

  Prosiding Seminar Nasional Kulit, Karet dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Cifriadi, A., dan Maspanger, D. R. (2005). Sifat Teknis Vulkanisat Sol Sepatu Karet Alam Menggunakan Bahan Pengisi Abu Terbang Batubara. Prosiding Seminar Nasional Teknologi

  Inovatif untuk Pengembangan Industri Berbasis Pertanian. Balai Besar Penelitian dan Pengembangan Pascapanen Petanian, 701-708.

  Datta, R. N., Huntink, N. M., Atta, S., and Talma, A. G. (2007). Rubber Vulcanizates Degradation and Stabilization. Rubber Chemistry and Technology. 80(3), 436-480. Dechojarassri, D., Narumon, R., Siriphat, C., and Panu, D. (2017). Mechanical Properties of Natural

  Rubber Composites Filled with Starch Sludge Compared with Other Waste and Commercial Fillers. International Journal of Chemical Engineering and Applications, 8(3). Ghosh. P., and Chakrabati, A. (2000). Conducting Carbon Black Filled EPDM Vulcanizates:

  Assessment of Dependence of Physical and Mechanical Properties and Conducting Character on Variation of Filler Loading. Eropean Polymer Journal, 36(1), 1043-1054. Hamzah, M.N, dan Asia A. A. (2013). Effect of Carbon Black Type on the Mechanical Behaviour of Elastomeric Material Under Dynamic Loading. AL-Qadisiya Journal For Engineering

  Sciences , 6(3), 268-296.

  Ismail, H., Ahmad, Z., and Mohd Ishak, Z. A. (2001). Comparison of cetyltrimethylammonium maleate and sulphenamide as an accelerator in carbon black filled natural rubber compounds.

  Polymer Testing 20, 607 –

  Ismail, H., Nordin, R., & Noor, A. M. (2005). The Effect of Filler Loading on Curing and Mechanical Properties of Natural Rubber/recycled Rubber Powder Blends. International Journal of Polymeric Materials, 54, 9-20. DOI: 10.1080/00914030390224256.

  Kinasih, N.A., dan Faturrohman. M. I. (2016). Ketahanan n-pentana dan sifat mekanis vulkanisat karet perapat dari campuran karet alam/akrilonitril-butadiena dengan kompatibiliser. Majalah

  Kulit, Karet, dan Plastik, 32(2), 99-110. http://dx.doi.org/10.20543/mkkp.v32i2.1013

  Murugesan, A., Rajkumar, B., Baskaran, R., and Arichandran, R. (2015). Studies on Physico - Mechanical Properties of Chloroprene Rubber Vulcanizate for Belting Application.

  International Journal for Scientific Research & Development, 3(10), 1090-1093.

  Nasruddin., Sudirman., Mahendra, A., dan Haryono, A. (2014). Model Pengembangan Formula Kompon Vulkanisir Ban Luar Dump Truck dengan Filler Fly Ash. Jurnal Dinamika Penelitian Industri, 25(1), 53-61.

  Norma, K.N.A., dan Fathurrohman, M.I, (2017). Effect of Curing Systems on Mechanical Properties and N-Pentane Resistance of Carbon Black Filled Natural Rubber Vulcanizates.

  Journal of Engineering and Science Research 1(2), 245-251. DOI: 10.26666/rmp.jesr.2017.2.36.

  Onyeagoro, G.N. (2012). Cure Characteristics and Physico-Mechanical Properties of Carbonized Bamboo Fibre Filled Natural Rubber Vulcanizates. International Journal of Modern Engineering Research (IJMER), 2(6), 4683-4690.

  Phanny, Y., Azura, A.R., and Ismail, H. (-). Effect of Different Origins of Natural Rubber on The Properties of Carbon Black Filled Natural Rubber Composites. ASEAN Engineering Journal Part B, 2(2), 1-8.

  Pongdong, W., Charoen, N., Claudia., Kummerlöwe., and Norbert, V. (2015). Influence of Filler from a Renewable Resource and Silane Coupling Agent on the Properties of Epoxidized Natural Rubber Vulcanizates. Hindawi Publishing Corporation Journal of Chemistry Volume

  2015. http://dx.doi.org/10.1155/2015/796459

  Prosiding Seminar Nasional Kulit, Karet, dan Plastik ke-7 Yogyakarta, 29 Agustus 2018

  Pratama, Y., Heri, dan Putranto. T. (2007). Coal abu terbang batubara conversion to zeolite for

  removal of chromium and nickel from wastewaters. http://www.google.com. Diakses tanggal 25 Pebruari 2009.

  Prasetyo, D., Wijang, W.R., dan Ubaidillah, (2013). Pengaruh Penambahan Coupling Agent Terhadap Kekuatan Mekanik Komposit Polyester-Cantula Dengan Anyaman Serat 3D Angle Interlock. Mekanika, 12(1), 44-52.

  Ramesan, M.T., George, M., Baby, K., and Rosamma, A. (2001). Role of dichlorocarbene modified styrene butadiene rubber in compatibilisation of styrene butadiene rubber and chloroprene rubber blends. European Polymer Journal 37, 719-728. Savetlana, S., Zulhendri, Sukmana, I., and Saputra, F.A. (2017). The Effect of Carbon Black

  Loading and Structure on Tensile Property of Natural Rubber Composite. Materials Science and Engineering, 223. Doi:10.1088/1757-899X/223/1/012009. Seny, W., Ely, dan S, Tien, (2011). Karakterisasi Abu Terbang PLTU Cilacap untuk menurunkan

  Kesadahan Air Desa Darmakradenan Kecamatan Ajibarang Kabupaten Banyumas. Jurnal Molekul, 6(1), 35-39. Stefano, M. (2010). Penggunaan Bahan Pengisi Abu Terbang Dalam Industri Karet. Prosiding Bandung Edisi Ekstra (SNaPP2010), Bandung Indonesia pp. 49-53. Yahya, N. Z. N., Nik, Y., Nik, N. Z., Hanafi, I., Sam, S.T., and Ragunathan, S. (2013). Natural

  Rubber/Styrene Butadiene Rubber/Recycled Nitrile Glove (NR/SBR/rNBRg) Ternary Blend: Tensile Properties & Morphology. Advances in Environmental Biology, 7(12), 3731-3736. Special Issue for International Conference of Advanced Materials Engineering and Technology (ICAMET 2013), 28-29 November 2013, Bandung Indonesia.

  Vargas, C. A., Sierra, J. D., Posada, J. C., Garcia, L. A., and Zapata, L. J. (2016). Reinforcement effect of carbon black in Colombian natural rubber: Benchmarking with Guatemala rubber.

  Journal of Elastomers & Plastics 1 –14. DOI: 10.1177/0095244316645953.

  Zhao. F., Weina, B., and Shugao, Z. (2011): Influence of Crosslink Density on Mechanical Properties of Natural Rubber Vulcanizates. Journal of Macromolecular Science,

  Part B: Physics, 50(7), 1460-1469. http://dx.doi.org/10.1080/00222348.2010.507453