Chau, Intel, ICSICT 2004 Chau, Intel, ICSICT 2004 Chau, Intel, ICSICT 2004

Technology Node 0.5 µm 0.35 µm 0.25 µm 0.18 µm 0.13 µm 90nm 65nm 45nm 30nm Transistor Physical Gate Length 130nm 70nm 50nm 30nm 20nm 15nm 1995 2005 1990 2000 2010 0.01 0.10 1.00 Micrometer Nanotechnology 10 100 1000 Nanometer Transistor Scaling • Transistor physical gate length will reach ~15nm before end of this decade, and ~10nm early next decade 3

R. Chau, Intel, ICSICT 2004

Transistor Scaling and Research Roadmap Transistor Scaling and Research Roadmap 4 Gate L G = 10nm L G = 10nm 20nm Length Development 25 nm 15nm 15nm Length 15nm Length Research Research 65nm Node 2005 45nm Node 2007 90nm Node 2003 32nm Node 2009 22nm Node 2011 10nm Length 10nm Length Research Research C C - - nanotube nanotube Prototype Prototype Research Research Nanowire Nanowire Prototype Prototype Research Research 5 n m 5 n m 5nm 2015-2019 Research 50nm Length Production 30nm Length Development Drain Source Source III-V Device Prototype Research S G D Epi III-V Non-planar Tri-Gate Architecture Option 30nm Uniaxial Strain SiGe SD PMOS High-K Metal-Gate Options 1.2nm Ultra-thin SiO2 Robert Chau, Intel, ICSICT 2004 State-of-the-Art Si Nanotechnologies • Gate Dielectric Technology – Ultra-thin 1.2 nm nitrided gate oxide implemented in 90nm technology node – New high-Kmetal-gate stack key option for 45nm node • Strained Si Technology • Uniaxial strain implemented in 90nm node • Biaxial strain • Non-planar Tri-gate Transistor Architecture option for 45nm, 32nm node and beyond • Si transistor is becoming less silicon – SiGe SD, metal gate electrodes, metallic high-K etc 5

R. Chau, Intel, ICSICT 2004

High-KPolySi Transistors 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

0.2 0.4

0.6 0.8

1 1.2 Vg V Id A µ m Vd = 1.3V Lg = 110nm PolySiHigh-K Toxe = 17A PolySiSiO2 Toxe = 20A • High-KpolySi transistors suffer from high V TH , degraded channel mobility and poor drive performance High-K Poly-Si 100 200 300 400 500 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Electric Field MVcm In versio n Electro n Mo bility cm2Vs Universal Mobility SiO2Poly-Si 6

R. Chau, Intel, ICSICT 2004

High-K and PolySi are Incompatible O M O O O O M M M O M O O O O M M M O O O O O O O O O M O O O O M M M O M O O O O M M M M O M O O O O M M M O M O O O O M M M M Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si M Si Si Si Si Si Poly Si Interface High-K M = Zr, Hf Defect • Defect formation at the polySi-high-K interface • 1 defect out of 100 surface atoms to pin Vth 7 Robert Chau, Intel, ICSICT 2004 Phonon Scattering Limits Channel Mobility in High-KPolySi Transistors 1.0E-05 1.5E-05 2.0E-05 2.5E-05 3.0E-05 3.5E-05 4.0E-05 4.5E-05 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 E-Field MVcm d1ueffdT High-KPolySi SiO2PolySi Phonon scattering E-Field µ 1 ∂ ∂ T PH µ 1 ∂ ∂ T Coul µ 1 = ∂ ∂ T SR µ µ ph ↓ T ↑ µ Coul ↑ T ↑ µ SR ~ const Coulombic Phonon Surface Roughness SR ph Coul eff µ µ µ µ 1 1 1 1 + + = 8 Robert Chau, Intel, ICSICT 2004 Metal Gate Screens Surface Phonon Scattering and Improves Mobility in High-K Transistors 200 400 600 800 1000 1200

0.5 1

1.5 Transverse Electric Field, E

eff MVcm Surface Phonon Limited Mobility cm 2 V.s 471 P860 W019-BKM SiO2 + Poly-Si HfO2 + PolySi HfO2+Metal Gate T = 25 C High-KPolySi SiO2PolySi High-KMetal-gate 9

R. Chau, Intel, ICSICT 2004