Springback in an elastic, perfectly plastic material
6.6.2 Residual stresses after unloading
When an elastic, perfectly plastic sheet is unloaded from a fully plastic state, it is shown above that the change in moment is M = −M p . Substituting in Equation 6.30 −St 2 4 t 3 12 = σ 1 max t 2 i.e. the change in stress at the outer fibre is σ 1 = − 3 2 S 6.34 Equation 6.34 supports the assumption that for the simple bending model given here, the unloading process is fully elastic. Thus the effect of unloading is equivalent to adding an elastic stress distribution of maximum value of –3S2 to the fully plastic stress state as shown in Figure 6.18. The residual stress distribution is shown on the right of Figure 6.18; this an is idealized repre- sentation arising from the simple model, but it does show that after unloading, the tension 94 Mechanics of Sheet Metal Forming ≡ S −3 S 2 M p M = 0 − M p − S 2 + Figure 6.18 Residual stress distribution after unloading from a fully plastic moment. side of the bend would have a significant compressive residual stress at the surface and there would be a residual tensile stress on the inner surface.6.6.3 Reverse bending
If a sheet has been bent to a fully plastic state and unloaded, it is interesting to see what reverse bending is required to cause renewed plastic deformation. From Figure 6.16, it may be seen that the change in stress required at the outer fibre to just start yielding is −2S. Substituting in Equation 6.30, shows that the change in moment is M = − 2S t 2 t 3 12 = − St 2 3 6.35 The moment for reverse yielding is therefore M rev. = St 2 1 4 − 1 3 = − St 2 12 = − M e 2 6.36 Thus yielding starts at only half the initial yield moment as shown in Figure 6.19. This softening effect is important as there are a number of processes in which sheet goes through bend–unbend and reverse bend cycles. The actual softening is likely to be greater than that calculated above as most materials will also have some Bauschinger effect and yield at a reverse stress of magnitude less than S. M Moment Curvature M e = 4 M p = 1r 2 12 St 2 − − M p St 2 6 St 2 M e = − Figure 6.19 Reverse bending of an elastic, perfectly plastic sheet. Bending of sheet 95Parts
» 4f handbook jackhumechanicsofsheetmetalformingsecond
» The engineering stress–strain curve
» The true stress–strain curve
» Worked example tensile test properties
» Rate sensitivity Tensile test
» Shape of the true stress–strain curve
» Anisotropy Effect of properties on forming
» Fracture Effect of properties on forming
» Homogeneity Effect of properties on forming
» Surface effects Effect of properties on forming
» Damage Effect of properties on forming
» Rate sensitivity Effect of properties on forming
» Comment Effect of properties on forming
» Other mechanical tests 4f handbook jackhumechanicsofsheetmetalformingsecond
» Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Principal strain increments Uniaxial tension
» Constant volume incompressibility condition
» Stress and strain ratios isotropic material
» True, natural or logarithmic strains
» Maximum shear stress The hydrostatic stress
» The von Mises yield condition
» Relation between the stress and strain ratios
» Introduction Work of plastic deformation
» Work hardening hypothesis 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effective stress and strain functions
» Summary Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Equal biaxial stretching, β = 1 Modes of deformation
» Plane strain, β = 0 Modes of deformation
» Uniaxial tension, β = −12 Modes of deformation
» Power law Use of a pre-strain constant
» Worked example empirical laws
» Uniaxial compression, α = −∞, β = −2 The stress diagram
» Worked example tensions Principal tensions or tractions
» Strain distributions Summary Exercises
» Introduction 4f handbook jackhumechanicsofsheetmetalformingsecond
» Thickness of the element Stress on the element Tension or traction force at a point
» Equilibrium of the element sliding on a curved surface
» Force equilibrium at the blank-holder and punch The punch force
» Tension distribution over the section
» Strain and thickness distribution
» Accuracy of the simple model Worked example 2D stamping
» Worked example Stamping a rectangular panel
» Stretch and draw ratios in a stamping Exercises
» Uniaxial tension of a perfect strip
» Worked example maximum uniform strain
» The effect of rate sensitivity
» A condition for local necking
» Strain-hardening Factors affecting the forming limit curve
» Inhomogeneity Factors affecting the forming limit curve
» Anisotropy Factors affecting the forming limit curve
» Other considerations Factors affecting the forming limit curve
» The forming window 4f handbook jackhumechanicsofsheetmetalformingsecond
» Geometry and strain in bending Plane strain bending
» Introduction Equilibrium conditions 4f handbook jackhumechanicsofsheetmetalformingsecond
» Elastic, perfectly plastic model
» Elastic bending Bending without tension
» Rigid, perfectly plastic bending
» Elastic, perfectly plastic bending
» Bending of a strain-hardening sheet
» Worked example moments Bending without tension
» Springback in an elastic, perfectly plastic material
» Residual stresses after unloading
» Reverse bending Elastic unloading and springback
» Strain distribution Small radius bends
» Stress distribution in small radius bends
» The moment curvature characteristic
» The bending line construction
» Examples of deflected shapes
» Bending a sheet in a vee-die
» Shell geometry The shell element
» Introduction Equilibrium equations 4f handbook jackhumechanicsofsheetmetalformingsecond
» Approximate models of forming axisymmetric shells
» Hole expansion Drawing Applications of the simple theory
» Summary 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effect of strain-hardening Drawing the flange
» Effect of friction on drawing stress
» The Limiting Drawing Ratio and anisotropy
» Introduction Cup height 4f handbook jackhumechanicsofsheetmetalformingsecond
» Redrawing cylindrical cups 4f handbook jackhumechanicsofsheetmetalformingsecond
» Wall ironing of deep-drawn cups
» The hydrostatic bulging test
» An approximate model of bulging a circular diaphragm
» Worked example the hydrostatic bulging test
» Worked example punch stretching
» Effect of punch shape and friction
» Worked example curving an elastic, perfectly plastic sheet
» Worked example curving a strain-hardening sheet
» Introduction Bending a rigid, perfectly plastic sheet under tension
» Thickness change during bending Friction between the points A and B
» Unbending at B Worked example drawing over a radius
» Draw-beads 4f handbook jackhumechanicsofsheetmetalformingsecond
» Free expansion of a cylinder by internal pressure
» Tube forming in a frictionless die
» Tube forming with sticking friction or very high friction
» Constant thickness deformation for a tube expanded by internal pressure
» Effect of friction on axial compression
Show more