Geometry and strain in bending Plane strain bending
6.3 Equilibrium conditions
We consider a general stress distribution on a normal section through a unit width of sheet in bending, as shown in Figure 6.5. The force acting on a strip of thickness dy across the unit section is σ 1 × dy × 1. The tension T on the section is in equilibrium with the integral of this force element, i.e. T = t 2 −t2 σ 1 dy 6.7 84 Mechanics of Sheet Metal Forming R r y t 2 t 2 s 1 × d y × 1 M T dy a b Figure 6.5 Equilibrium diagram a for a section through a unit width of sheet and b a typical stress distribution. Integrating the moment of the force element, we obtain M = t 2 −t2 σ 1 dy1y = t 2 −t2 σ 1 y dy 6.8 We note too that there is a third equilibrium equation for forces in the radial direction arising from the tension T . This is given in Section 4.2.5 by Equation 4.11.6.4 Choice of material model
For the strain distribution given by Equation 6.3, the stress distribution on a section can be determined if a stress strain law is available. In general, the material will have an elastic, plastic strain-hardening behaviour as shown in Figure 6.6a. In many cases, it is useful to approximate this by a simple law and several examples will be given. The choice of material model will depend on the magnitude of the strain in the process. The strain will depend mainly on the bend ratio, which is defined as the ratio of the radius of curvature to sheet thickness, ρt.6.4.1 Elastic, perfectly plastic model
If the bend ratio is not less than about 50, strain-hardening may not be so important and the material model can be that shown in Figure 6.6b. This has two parts, i.e. if the stress s 1 e 1 E ′ S S s 1 = K′e n 1 a s 1 e 1 b s 1 e 1 c s 1 e 1 d Figure 6.6 Material models for bending. a An actual stress–strain curve. b An elastic, perfectly plastic model. c A rigid, perfectly plastic model. d A strain-hardening plastic model. Bending of sheet 85Parts
» 4f handbook jackhumechanicsofsheetmetalformingsecond
» The engineering stress–strain curve
» The true stress–strain curve
» Worked example tensile test properties
» Rate sensitivity Tensile test
» Shape of the true stress–strain curve
» Anisotropy Effect of properties on forming
» Fracture Effect of properties on forming
» Homogeneity Effect of properties on forming
» Surface effects Effect of properties on forming
» Damage Effect of properties on forming
» Rate sensitivity Effect of properties on forming
» Comment Effect of properties on forming
» Other mechanical tests 4f handbook jackhumechanicsofsheetmetalformingsecond
» Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Principal strain increments Uniaxial tension
» Constant volume incompressibility condition
» Stress and strain ratios isotropic material
» True, natural or logarithmic strains
» Maximum shear stress The hydrostatic stress
» The von Mises yield condition
» Relation between the stress and strain ratios
» Introduction Work of plastic deformation
» Work hardening hypothesis 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effective stress and strain functions
» Summary Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Equal biaxial stretching, β = 1 Modes of deformation
» Plane strain, β = 0 Modes of deformation
» Uniaxial tension, β = −12 Modes of deformation
» Power law Use of a pre-strain constant
» Worked example empirical laws
» Uniaxial compression, α = −∞, β = −2 The stress diagram
» Worked example tensions Principal tensions or tractions
» Strain distributions Summary Exercises
» Introduction 4f handbook jackhumechanicsofsheetmetalformingsecond
» Thickness of the element Stress on the element Tension or traction force at a point
» Equilibrium of the element sliding on a curved surface
» Force equilibrium at the blank-holder and punch The punch force
» Tension distribution over the section
» Strain and thickness distribution
» Accuracy of the simple model Worked example 2D stamping
» Worked example Stamping a rectangular panel
» Stretch and draw ratios in a stamping Exercises
» Uniaxial tension of a perfect strip
» Worked example maximum uniform strain
» The effect of rate sensitivity
» A condition for local necking
» Strain-hardening Factors affecting the forming limit curve
» Inhomogeneity Factors affecting the forming limit curve
» Anisotropy Factors affecting the forming limit curve
» Other considerations Factors affecting the forming limit curve
» The forming window 4f handbook jackhumechanicsofsheetmetalformingsecond
» Geometry and strain in bending Plane strain bending
» Introduction Equilibrium conditions 4f handbook jackhumechanicsofsheetmetalformingsecond
» Elastic, perfectly plastic model
» Elastic bending Bending without tension
» Rigid, perfectly plastic bending
» Elastic, perfectly plastic bending
» Bending of a strain-hardening sheet
» Worked example moments Bending without tension
» Springback in an elastic, perfectly plastic material
» Residual stresses after unloading
» Reverse bending Elastic unloading and springback
» Strain distribution Small radius bends
» Stress distribution in small radius bends
» The moment curvature characteristic
» The bending line construction
» Examples of deflected shapes
» Bending a sheet in a vee-die
» Shell geometry The shell element
» Introduction Equilibrium equations 4f handbook jackhumechanicsofsheetmetalformingsecond
» Approximate models of forming axisymmetric shells
» Hole expansion Drawing Applications of the simple theory
» Summary 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effect of strain-hardening Drawing the flange
» Effect of friction on drawing stress
» The Limiting Drawing Ratio and anisotropy
» Introduction Cup height 4f handbook jackhumechanicsofsheetmetalformingsecond
» Redrawing cylindrical cups 4f handbook jackhumechanicsofsheetmetalformingsecond
» Wall ironing of deep-drawn cups
» The hydrostatic bulging test
» An approximate model of bulging a circular diaphragm
» Worked example the hydrostatic bulging test
» Worked example punch stretching
» Effect of punch shape and friction
» Worked example curving an elastic, perfectly plastic sheet
» Worked example curving a strain-hardening sheet
» Introduction Bending a rigid, perfectly plastic sheet under tension
» Thickness change during bending Friction between the points A and B
» Unbending at B Worked example drawing over a radius
» Draw-beads 4f handbook jackhumechanicsofsheetmetalformingsecond
» Free expansion of a cylinder by internal pressure
» Tube forming in a frictionless die
» Tube forming with sticking friction or very high friction
» Constant thickness deformation for a tube expanded by internal pressure
» Effect of friction on axial compression
Show more