The load–extension diagram
1.1.2 The engineering stress–strain curve
Prior to the development of modern data processing systems, it was customary to scale the load–extension diagram by dividing load by the initial cross-sectional area, A = w t , and the extension by l , to obtain the engineering stress–strain curve. This had the advantage that a curve was obtained which was independent of the initial dimensions of the test-piece, but it was still not a true material property curve. During the test, the cross-sectional area will diminish so that the true stress on the material will be greater than the engineering stress. The engineering stress–strain curve is still widely used and a number of properties are derived from it. Figure 1.3a shows the engineering stress strain curve calculated from the load, extension diagram in Figure 1.2. Engineering stress is defined as σ eng. = P A 1.2 and engineering strain as e eng. = l l × 100 1.3 In this diagram, the initial yield stress is σ f = P y A 1.4 The maximum engineering stress is called the ultimate tensile strength or the tensile strength and is calculated as T S = P max. A 1.5 As already indicated, this is not the true stress at maximum load as the cross-sectional area is no longer A . The elongation at maximum load is called the maximum uniform elongation, E u . If the strain scale near the origin is greatly increased, the elastic part of the curve would be seen, as shown in Figure 1.3b. The strain at initial yield, e y , as mentioned, is very small, typically about 0.1. The slope of the elastic part of the curve is the elastic modulus, also called Youngs modulus: E = σ f e y 1.6 If the strip is extended beyond the elastic limit, permanent plastic deformation takes place; upon unloading, the elastic strain will be recovered and the unloading line is parallel to the initial elastic loading line. There is a residual plastic strain when the load has been removed as shown in Figure 1.3b. Material properties 3 50 100 150 200 250 300 5 10 15 20 25 30 35 40 45 50 Engineering strain, Engineering stress, MPa E Tot. E u s f TS a Engineering strain Engineering stress e y s f E e eng. s eng. b Engineering strain e eng. 0.2 s proof s eng. Engineering stress c Figure 1.3 a Engineering stress–strain curve for the test of drawing quality sheet steel shown in Figure 1.2. b Initial part of the above diagram with the strain scale magnified to show the elastic behaviour. c Construction used to determine the proof stress in a material with a gradual elastic, plastic transition. 4 Mechanics of Sheet Metal FormingParts
» 4f handbook jackhumechanicsofsheetmetalformingsecond
» The engineering stress–strain curve
» The true stress–strain curve
» Worked example tensile test properties
» Rate sensitivity Tensile test
» Shape of the true stress–strain curve
» Anisotropy Effect of properties on forming
» Fracture Effect of properties on forming
» Homogeneity Effect of properties on forming
» Surface effects Effect of properties on forming
» Damage Effect of properties on forming
» Rate sensitivity Effect of properties on forming
» Comment Effect of properties on forming
» Other mechanical tests 4f handbook jackhumechanicsofsheetmetalformingsecond
» Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Principal strain increments Uniaxial tension
» Constant volume incompressibility condition
» Stress and strain ratios isotropic material
» True, natural or logarithmic strains
» Maximum shear stress The hydrostatic stress
» The von Mises yield condition
» Relation between the stress and strain ratios
» Introduction Work of plastic deformation
» Work hardening hypothesis 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effective stress and strain functions
» Summary Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Equal biaxial stretching, β = 1 Modes of deformation
» Plane strain, β = 0 Modes of deformation
» Uniaxial tension, β = −12 Modes of deformation
» Power law Use of a pre-strain constant
» Worked example empirical laws
» Uniaxial compression, α = −∞, β = −2 The stress diagram
» Worked example tensions Principal tensions or tractions
» Strain distributions Summary Exercises
» Introduction 4f handbook jackhumechanicsofsheetmetalformingsecond
» Thickness of the element Stress on the element Tension or traction force at a point
» Equilibrium of the element sliding on a curved surface
» Force equilibrium at the blank-holder and punch The punch force
» Tension distribution over the section
» Strain and thickness distribution
» Accuracy of the simple model Worked example 2D stamping
» Worked example Stamping a rectangular panel
» Stretch and draw ratios in a stamping Exercises
» Uniaxial tension of a perfect strip
» Worked example maximum uniform strain
» The effect of rate sensitivity
» A condition for local necking
» Strain-hardening Factors affecting the forming limit curve
» Inhomogeneity Factors affecting the forming limit curve
» Anisotropy Factors affecting the forming limit curve
» Other considerations Factors affecting the forming limit curve
» The forming window 4f handbook jackhumechanicsofsheetmetalformingsecond
» Geometry and strain in bending Plane strain bending
» Introduction Equilibrium conditions 4f handbook jackhumechanicsofsheetmetalformingsecond
» Elastic, perfectly plastic model
» Elastic bending Bending without tension
» Rigid, perfectly plastic bending
» Elastic, perfectly plastic bending
» Bending of a strain-hardening sheet
» Worked example moments Bending without tension
» Springback in an elastic, perfectly plastic material
» Residual stresses after unloading
» Reverse bending Elastic unloading and springback
» Strain distribution Small radius bends
» Stress distribution in small radius bends
» The moment curvature characteristic
» The bending line construction
» Examples of deflected shapes
» Bending a sheet in a vee-die
» Shell geometry The shell element
» Introduction Equilibrium equations 4f handbook jackhumechanicsofsheetmetalformingsecond
» Approximate models of forming axisymmetric shells
» Hole expansion Drawing Applications of the simple theory
» Summary 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effect of strain-hardening Drawing the flange
» Effect of friction on drawing stress
» The Limiting Drawing Ratio and anisotropy
» Introduction Cup height 4f handbook jackhumechanicsofsheetmetalformingsecond
» Redrawing cylindrical cups 4f handbook jackhumechanicsofsheetmetalformingsecond
» Wall ironing of deep-drawn cups
» The hydrostatic bulging test
» An approximate model of bulging a circular diaphragm
» Worked example the hydrostatic bulging test
» Worked example punch stretching
» Effect of punch shape and friction
» Worked example curving an elastic, perfectly plastic sheet
» Worked example curving a strain-hardening sheet
» Introduction Bending a rigid, perfectly plastic sheet under tension
» Thickness change during bending Friction between the points A and B
» Unbending at B Worked example drawing over a radius
» Draw-beads 4f handbook jackhumechanicsofsheetmetalformingsecond
» Free expansion of a cylinder by internal pressure
» Tube forming in a frictionless die
» Tube forming with sticking friction or very high friction
» Constant thickness deformation for a tube expanded by internal pressure
» Effect of friction on axial compression
Show more