Unbending at B Worked example drawing over a radius
10.6 Draw-beads
In draw die forming as in Chapter 4, draw-beads are used to generate tension in the sheet. A draw-bead is illustrated schematically in Figure 10.10. The sheet enters at the left with a small tension T , and then undergoes a series of bending or unbending processes marked by the broken lines in the diagram. At each bending or unbending point, following Equation 10.20, the tension will increase, by T = 1 4η T y ρt 1 + T T y 2 and the thickness decrease, as indicated in Equation 10.21, by t t = − 1 2ρt T T y Between the points where the curvature changes, there will be an increase in tension, T f , due to friction, of T + T f = T exp μθ T T f h t n q r Figure 10.10 A draw-bead used to increase the tension in a sheet from T to T f as it passes through from left to right in a draw die. 150 Mechanics of Sheet Metal Forming where the angle of wrap θ is related to the depth of engagement h as shown in Figure 10.10. The tension generated by a bead can be increased by reducing the bend ratio ρt, and increasing the depth of the bead h, which will increase the angle θ . For a given bead, the tension will increase with the flow stress of the sheet S, with the incoming thickness t and with the friction coefficient μ. It may be seen from Chapter 4 that in order to maintain a constant strain distribution in a part, the tension applied should increase if the above variables increase. Therefore a draw-bead is, to some extent, a self- compensating device in a draw die that will adjust the tension as material properties and friction change.10.7 Exercises
Ex. 10.1 A sheet of aluminium, 1.85 mm, thick and having a constant plane strain flow stress of 180 MPa is curved over a form block having a radius of 600 mm. If the plane strain elastic modulus is 78 GPa, determine the tension required to a initiate plastic deformation, and b to make the sheet fully plastic. [Ans: 111, 333 kNm] Ex. 10.2 For the operation in Exercise 10.1, determine the tension and the moment when the plastic deformation zone has penetrated to the mid-surface. What is the final radius of curvature after unloading? Sketch the approximate form of the residual stress distribution in the sheet. [Ans: 278 kNm, 34 Nmm, 1.19 m] Ex. 10.3 Steel sheet is curved by stretching over a frictionless form block as in Figure 10.1. The radius of curvature of the block is 2.5 m. The final mean plastic strain in the sheet is 0.012 1.2. Aluminium sheet is substituted and the same final strain preserved. The plane strain elastic modulus and stress strain curves and the thickness are given below. Compare the final radius of curvature of each sheet. [Ans: 2.56 v. 2.59 m] Material E ′ GPa Stress, strain, MPa Thickness, mm Steel 220 σ 1 = 700ε 0.2 1 0.8 Aluminium 78 σ 1 = 400ε 0.2 1 1.2 Ex. 10.4 A steel sheet is drawn over a radius ρ = bt, as in Figure 10.7. If the back tension is 60 of the yield tension in plane strain, show how the stress σ 1 S and the thickness reduction factor −tt vary with the bend ratio b = ρt in the range 3 b 10 for the first bend. Assume the efficiency factor is 1. Combined bending and tension of sheet 151Parts
» 4f handbook jackhumechanicsofsheetmetalformingsecond
» The engineering stress–strain curve
» The true stress–strain curve
» Worked example tensile test properties
» Rate sensitivity Tensile test
» Shape of the true stress–strain curve
» Anisotropy Effect of properties on forming
» Fracture Effect of properties on forming
» Homogeneity Effect of properties on forming
» Surface effects Effect of properties on forming
» Damage Effect of properties on forming
» Rate sensitivity Effect of properties on forming
» Comment Effect of properties on forming
» Other mechanical tests 4f handbook jackhumechanicsofsheetmetalformingsecond
» Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Principal strain increments Uniaxial tension
» Constant volume incompressibility condition
» Stress and strain ratios isotropic material
» True, natural or logarithmic strains
» Maximum shear stress The hydrostatic stress
» The von Mises yield condition
» Relation between the stress and strain ratios
» Introduction Work of plastic deformation
» Work hardening hypothesis 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effective stress and strain functions
» Summary Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Equal biaxial stretching, β = 1 Modes of deformation
» Plane strain, β = 0 Modes of deformation
» Uniaxial tension, β = −12 Modes of deformation
» Power law Use of a pre-strain constant
» Worked example empirical laws
» Uniaxial compression, α = −∞, β = −2 The stress diagram
» Worked example tensions Principal tensions or tractions
» Strain distributions Summary Exercises
» Introduction 4f handbook jackhumechanicsofsheetmetalformingsecond
» Thickness of the element Stress on the element Tension or traction force at a point
» Equilibrium of the element sliding on a curved surface
» Force equilibrium at the blank-holder and punch The punch force
» Tension distribution over the section
» Strain and thickness distribution
» Accuracy of the simple model Worked example 2D stamping
» Worked example Stamping a rectangular panel
» Stretch and draw ratios in a stamping Exercises
» Uniaxial tension of a perfect strip
» Worked example maximum uniform strain
» The effect of rate sensitivity
» A condition for local necking
» Strain-hardening Factors affecting the forming limit curve
» Inhomogeneity Factors affecting the forming limit curve
» Anisotropy Factors affecting the forming limit curve
» Other considerations Factors affecting the forming limit curve
» The forming window 4f handbook jackhumechanicsofsheetmetalformingsecond
» Geometry and strain in bending Plane strain bending
» Introduction Equilibrium conditions 4f handbook jackhumechanicsofsheetmetalformingsecond
» Elastic, perfectly plastic model
» Elastic bending Bending without tension
» Rigid, perfectly plastic bending
» Elastic, perfectly plastic bending
» Bending of a strain-hardening sheet
» Worked example moments Bending without tension
» Springback in an elastic, perfectly plastic material
» Residual stresses after unloading
» Reverse bending Elastic unloading and springback
» Strain distribution Small radius bends
» Stress distribution in small radius bends
» The moment curvature characteristic
» The bending line construction
» Examples of deflected shapes
» Bending a sheet in a vee-die
» Shell geometry The shell element
» Introduction Equilibrium equations 4f handbook jackhumechanicsofsheetmetalformingsecond
» Approximate models of forming axisymmetric shells
» Hole expansion Drawing Applications of the simple theory
» Summary 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effect of strain-hardening Drawing the flange
» Effect of friction on drawing stress
» The Limiting Drawing Ratio and anisotropy
» Introduction Cup height 4f handbook jackhumechanicsofsheetmetalformingsecond
» Redrawing cylindrical cups 4f handbook jackhumechanicsofsheetmetalformingsecond
» Wall ironing of deep-drawn cups
» The hydrostatic bulging test
» An approximate model of bulging a circular diaphragm
» Worked example the hydrostatic bulging test
» Worked example punch stretching
» Effect of punch shape and friction
» Worked example curving an elastic, perfectly plastic sheet
» Worked example curving a strain-hardening sheet
» Introduction Bending a rigid, perfectly plastic sheet under tension
» Thickness change during bending Friction between the points A and B
» Unbending at B Worked example drawing over a radius
» Draw-beads 4f handbook jackhumechanicsofsheetmetalformingsecond
» Free expansion of a cylinder by internal pressure
» Tube forming in a frictionless die
» Tube forming with sticking friction or very high friction
» Constant thickness deformation for a tube expanded by internal pressure
» Effect of friction on axial compression
Show more