Constant volume incompressibility condition
2.2.4 True, natural or logarithmic strains
It may be noted that in the tensile test the following conditions apply: • the principal strain increments all increase smoothly in a constant direction, i.e. dε 1 always increases positively and does not reverse; this is termed a monotonic process; • during the uniform deformation phase of the tensile test, from the onset of yield to the maximum load and the start of diffuse necking, the ratio of the principal strains remains constant, i.e. the process is proportional; and • the principal directions are fixed in the material, i.e. the direction 1 is always along the axis of the test-piece and a material element does not rotate with respect to the principal directions. If, and only if, these conditions apply, we may safely use the integrated or large strains defined in Chapter 1. For uniaxial deformation of an isotropic material, these strains are ε 1 = ln l l ; ε 2 = ln w w = − 1 2 ε 1 ; ε 3 = ln t t o = − 1 2 ε 1 2.52.3 General sheet processes plane stress
In contrast with the tensile test in which two of the principal stresses are zero, in a typical sheet process most elements will deform under membrane stresses σ 1 and σ 2 , which are both non-zero. The third stress, σ 3 , perpendicular to the surface of the sheet is usually quite small as the contact pressure between the sheet and the tooling is generally very much lower than the yield stress of the material. As indicated above, we will make the simplifying assumption that it is zero and assume plane stress deformation, unless otherwise stated. If we also assume that the same conditions of proportional, monotonic deformation apply as for the tensile test, then we can develop a simple theory of plastic deformation of sheet that is reasonably accurate. We can illustrate these processes for an element as shown in Figure 2.2a for the uniaxial tension and Figure 2.2b for a general plane stress sheet process.2.3.1 Stress and strain ratios
It is convenient to describe the deformation of an element, as in Figure 2.2b, in terms of either the strain ratio β or the stress ratio α. For a proportional process, which is the only kind we are considering, both will be constant. The usual convention is to define the 16 Mechanics of Sheet Metal FormingParts
» 4f handbook jackhumechanicsofsheetmetalformingsecond
» The engineering stress–strain curve
» The true stress–strain curve
» Worked example tensile test properties
» Rate sensitivity Tensile test
» Shape of the true stress–strain curve
» Anisotropy Effect of properties on forming
» Fracture Effect of properties on forming
» Homogeneity Effect of properties on forming
» Surface effects Effect of properties on forming
» Damage Effect of properties on forming
» Rate sensitivity Effect of properties on forming
» Comment Effect of properties on forming
» Other mechanical tests 4f handbook jackhumechanicsofsheetmetalformingsecond
» Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Principal strain increments Uniaxial tension
» Constant volume incompressibility condition
» Stress and strain ratios isotropic material
» True, natural or logarithmic strains
» Maximum shear stress The hydrostatic stress
» The von Mises yield condition
» Relation between the stress and strain ratios
» Introduction Work of plastic deformation
» Work hardening hypothesis 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effective stress and strain functions
» Summary Exercises 4f handbook jackhumechanicsofsheetmetalformingsecond
» Equal biaxial stretching, β = 1 Modes of deformation
» Plane strain, β = 0 Modes of deformation
» Uniaxial tension, β = −12 Modes of deformation
» Power law Use of a pre-strain constant
» Worked example empirical laws
» Uniaxial compression, α = −∞, β = −2 The stress diagram
» Worked example tensions Principal tensions or tractions
» Strain distributions Summary Exercises
» Introduction 4f handbook jackhumechanicsofsheetmetalformingsecond
» Thickness of the element Stress on the element Tension or traction force at a point
» Equilibrium of the element sliding on a curved surface
» Force equilibrium at the blank-holder and punch The punch force
» Tension distribution over the section
» Strain and thickness distribution
» Accuracy of the simple model Worked example 2D stamping
» Worked example Stamping a rectangular panel
» Stretch and draw ratios in a stamping Exercises
» Uniaxial tension of a perfect strip
» Worked example maximum uniform strain
» The effect of rate sensitivity
» A condition for local necking
» Strain-hardening Factors affecting the forming limit curve
» Inhomogeneity Factors affecting the forming limit curve
» Anisotropy Factors affecting the forming limit curve
» Other considerations Factors affecting the forming limit curve
» The forming window 4f handbook jackhumechanicsofsheetmetalformingsecond
» Geometry and strain in bending Plane strain bending
» Introduction Equilibrium conditions 4f handbook jackhumechanicsofsheetmetalformingsecond
» Elastic, perfectly plastic model
» Elastic bending Bending without tension
» Rigid, perfectly plastic bending
» Elastic, perfectly plastic bending
» Bending of a strain-hardening sheet
» Worked example moments Bending without tension
» Springback in an elastic, perfectly plastic material
» Residual stresses after unloading
» Reverse bending Elastic unloading and springback
» Strain distribution Small radius bends
» Stress distribution in small radius bends
» The moment curvature characteristic
» The bending line construction
» Examples of deflected shapes
» Bending a sheet in a vee-die
» Shell geometry The shell element
» Introduction Equilibrium equations 4f handbook jackhumechanicsofsheetmetalformingsecond
» Approximate models of forming axisymmetric shells
» Hole expansion Drawing Applications of the simple theory
» Summary 4f handbook jackhumechanicsofsheetmetalformingsecond
» Effect of strain-hardening Drawing the flange
» Effect of friction on drawing stress
» The Limiting Drawing Ratio and anisotropy
» Introduction Cup height 4f handbook jackhumechanicsofsheetmetalformingsecond
» Redrawing cylindrical cups 4f handbook jackhumechanicsofsheetmetalformingsecond
» Wall ironing of deep-drawn cups
» The hydrostatic bulging test
» An approximate model of bulging a circular diaphragm
» Worked example the hydrostatic bulging test
» Worked example punch stretching
» Effect of punch shape and friction
» Worked example curving an elastic, perfectly plastic sheet
» Worked example curving a strain-hardening sheet
» Introduction Bending a rigid, perfectly plastic sheet under tension
» Thickness change during bending Friction between the points A and B
» Unbending at B Worked example drawing over a radius
» Draw-beads 4f handbook jackhumechanicsofsheetmetalformingsecond
» Free expansion of a cylinder by internal pressure
» Tube forming in a frictionless die
» Tube forming with sticking friction or very high friction
» Constant thickness deformation for a tube expanded by internal pressure
» Effect of friction on axial compression
Show more