320 D. Kapanadze – B.-W. Schulze
L
EMMA
2. Let φ y, t ∈ C
∞ q
×
+
be a function such that there are constants m, δ ∈ such that sup
t ∈
+
D
α y
D
M t
φ y, t
≤ chyi
δ−|α|
ht i
m−M
for all y ∈
q
, t ∈
+
and all α ∈
✁
q
, M ∈
✁
, with constants c = cα, M 0. Then we have M
φ y,t
∈ S
0,δ q
×
q
;
✁
+
,
✁
+
. 33
Proof. Let us express the Schwartz space as a projective limit
✁
+
= proj lim ht i
−k
H
k +
: k ∈
✁
. An operator b is continuous in
✁
+
if for every k ∈
✁
there is an l = lk ∈
✁
such that kbk
✂
ht i
− l
H
l +
,h t i
− k
H
k +
≤ c for certain c = ck, l 0. The symbol estimates for 33 require for every k ∈
✁
an l = lk ∈
✁
such that κ
−1
η n
D
α y
M
φ y,t
o κη
u
ht i
− k
H
k +
≤ chyi
δ−|α|
kuk
ht i
− l
H
l +
, 34
for constants c 0 depending on k, l, α, for all α and k. Similarly to the proof of Lemma 1 the η
-derivatives may be ignored. Estimate 34 is equivalent to hti
k
D
α y
φ y, t hηi
−1
ht i
−l
v
H
k +
≤ chyi
δ−|α|
kvk
H
l +
35 for all v ∈ H
l +
. Setting l = k + m
+
for m
+
= maxm, 0 we get 35 from the system of simpler estimates
D
j t
n ht i
−m
+
D
α y
φ y, t hηi
−1
v t
o
L
2 +
≤ chyi
δ−|α|
kvk
H
l +
for all 0 ≤ j ≤ k. The function D
j t
ht i
−m
+
D
α y
φ y, t hηi
−1
v t
is a sum of expressions of the form
v
j
1
j
2
j
3
t = cht i
−m
+
− j
1
hηi
− j
2
D
j
2
t
D
α y
φ y, t hηi
−1
D
j
3
t
v t
for j
1
+ j
2
+ j
3
= j and constants c = c j
1
, j
2
, j
3
. We now employ the assumption on φ
, namely sup
t ∈
+
D
α y
D
j
2
t
φ y, t hηi
−1
≤ hyi
δ−|α|
ht hηi
−1
i
m− j
2
. Using ht hηi
−1
i
m− j
2
≤ ht i
m− j
2
for m − j
2
≥ 0 and ht hηi
−1
i
m− j
2
≤ 1 for m − j
2
0 we immediately get kv
j
1
j
2
j
3
t k
L
2 +
≤ chηi
δ−|α|
D
j
3
t
v
L
2 +
for all y ∈
q
, with different constants c 0. This gives us finally the estimates 35.
3.4. The algebra of boundary value problems
D
EFINITION
5.
µ, d;δ
cl n−1
×
n−1
; N
−
, N
+
for µ, d ∈ ×
✁
, δ ∈ , is defined to
be the set of all operator families
ay, η =
op
+
ay, η + gy, η
for arbitrary ax, ξ ∈ S
µ;δ cl
ξ ; x
n +
×
n tr,≍
and gy, η ∈
µ, d;δ
G,cl n−1
×
n−1
; N
−
, N
+
.
Boundary value problems 321
Observe that the components of σ
a := σ
ψ
a, σ
e
a, σ
ψ, e
a; σ
∂
a, σ
e
′
a, σ
∂, e
′
a 36
for ay, η ∈
µ, d;δ
cl n−1
×
n−1
; N
−
, N
+
, given by σ
ψ
a := σ
ψ
a , σ
e
a := σ
e
a , σ
ψ, e
a := σ
ψ, e
a , and
σ
∂
a =
σ
∂
op
+
a|
t =0
+ σ
∂
g , σ
e
′
a =
σ
e
′
op
+
a|
t =0
+ σ
e
′
g , σ
∂, e
′
a =
σ
∂, e
′
op
+
a|
t =0
+ σ
∂, e
′
g
are uniquely determined by ay, η, and that σ a = 0 implies ay, η ∈
µ− 1,d;δ−1
cl n−1
×
n−1
; N
−
, N
+
.
Moreover, ay, η ∈
µ, d;δ
cl n−1
×
n−1
; N ,
N
+
and by, η ∈
ν, e;̺
cl n−1
×
n−1
; N
−
, N
implies aby, η ∈
µ+ν, h;δ+̺
cl n−1
×
n−1
; N
−
, N
+
for h = maxν +
d, e where σ ab = σ aσ b with componentwise multiplication.
Next we define spaces of smoothing operators in the half-space. The space
−∞,0;−∞ n
+
; N
−
, N
+
is defined to be the set of all block matrix operators
✁
= A
K T
C :
✁
+
⊕
✁
n−1
,
N
−
−→
✁
+
⊕
✁
n−1
,
N
+
, where
i Auy, t = RR
n +
ay, t, y
′
, t
′
uy
′
, t
′
dy
′
dt
′
for certain ay, t, y
′
, t
′
∈
✁
n +
×
n +
=
✁
n
×
n
|
n +
×
n +
, u ∈
✁
n +
, ii K vy, t =
P
N
−
l=1
K
l
v
l
y, t for K
l
v
l
y, t = R
n−1
k
l
y, t, y
′
v
l
y
′
dy
′
for certain k
l
y, t, y
′
∈
✁
n +
×
n−1
=
✁
n
×
n−1
n +
×
n−1
, for v = v
l l=1,...,N
−
∈
✁
n−1
,
N
−
, iii T uy = T
m
uy
m=1,...,N
+
for T
m
uy = RR
n +
b
m
y, y
′
, t
′
uy
′
, t
′
dy
′
dt
′
for cer- tain b
m
y, y
′
, t
′
∈
✁
n−1
×
n +
=
✁
n−1
×
n
n−1
×
n +
, m = 1, . . . , N
+
for u ∈
✁
n +
, iv Cvy =
P
N
−
l=1
R c
lm
y, y
′
v
l
y
′
dy
′ m=1,...,N
+
for certain c
lm
y, y
′
∈
✁
n−1
×
n−1
, l = 1, . . . , N
−
, m = 1, . . . , N
+
.
−∞,d;−∞ n
+
; N
−
, N
+
for d ∈
✁
is the space of all operators
✂
=
✂
+
d
X
j =1
✂
j
∂
j t
322 D. Kapanadze – B.-W. Schulze
for arbitrary
✂
j
∈
−∞,0;−∞ n
+
; N
−
, N
+
, j = 0, . . . , d. Let L
µ;δ cl
n ⌣
denote the subspace of all P ∈ L
µ;δ cl
n
such that there is an R 0 with φ
Pψ = 0 for all φ, ψ ∈ C
∞ n
with supp φ, supp ψ ⊆
n
\ T
R
, cf. 28. Moreover, we set L
µ;δ cl
n +
⌣
= P = e
P|
n +
: e P ∈ L
µ;δ cl
n ⌣
. For P = e P|
n +
, e P ∈ L
µ;δ cl
n ⌣
we define σ
P = σ
ψ
e P
n +
×
n
\0
, σ
e
e P
n +
\0 ×
n
, σ
ψ, e
e P
n +
\0 ×
n
\0
37 D
EFINITION
6. The space
µ, d;δ
cl n
+
; N
−
, N
+
for µ, d ∈ ×
✁
, δ ∈ , is defined to
be the set of all operators
✁
= Op a + +
✂
38
for arbitrary ay, η ∈
µ, d;δ
cl n−1
×
n−1
; N
−
, N
+
, ∈
P 0 with P ∈ L
µ;δ cl
n ⌣
and
✂
∈
−∞,d;−∞ n
+
; N
−
, N
+
. Moreover, we set B
µ, d;δ
cl n
+
= u.l.c
µ, d;δ
cl n
+
; N
−
, N
+
. 39
Similarly, we get the subspaces of so-called Green operators of order µ, type d, and weight δ
µ, d;δ
G,cl n
+
; N
−
, N
+
and B
µ, d;δ
G,cl n
+
when we require amplitude functions to belong to
µ, d;δ
G,cl n−1
×
n−1
; N
−
, N
+
and R
µ, d;δ
G,cl n−1
×
n−1
, respectively. For
✁
∈
µ, d;δ
cl n
+
; N
−
, N
+
we write ord
✁
= µ; δ. Note that particularly simple elements in B
µ, 0;δ
cl n
+
are differential operators A =
X
|α|≤µ
a
α
xD
α x
40 with coefficients a
α
= ˜a
α
|
n +
where ˜ a
α
x ∈ S
δ cl
n x
. T
HEOREM
4. For every µ ∈ the space B
µ, 0;0
cl n
+
cf. the notation 39 contains an element R
µ
that induces isomorphisms R
µ
: H
s;̺ n
+
−→ H
s−µ;̺ n
+
41 for all s, ̺ ∈
as well as isomorphisms R
µ
:
✁
n +
−→
✁
n +
, 42
where R
−µ
:= R
µ −1
∈ B
−µ,0;0 cl
n +
. This is a well-known result for ̺ = 0, proved in this form for all s ∈
in Grubb [7]; note that for s ≤ −
1 2
we have to compose the pseudo-differential operators from the right by an extension operator l : H
s n
+
→ H
s n
, while for s −
1 2
we can take e
+
. Let us mention
Boundary value problems 323
for completeness that order reductions for s µ
+
−
1 2
have been constructed before by Boutet de Monvel [3]. The symbols from [7] have the form
r
µ −
ξ = χ
τ ahηi
hηi − i τ
µ
43 ξ = η, τ ∈
n
for a sufficiently large constant a 0 and a function χ ∈
✁
with F
−1
χ supported in
−
and χ 0 = 1. It was proved in [20], Section 5.3, that 43 is a classical symbol in ξ . In other words, we have r
µ −
ξ ∈ S
µ; cl
ξ ; x
n +
×
n tr
, and we can set R
µ
u = r
+
Op r
µ −
l where l = e
+
for s −
1 2
. It is now trivial that R
µ
induces isomorphisms for all s, ̺, because the operators with symbols 43 in
n
belong to L
µ; cl
n
, cf. 9. Note that the operator R
µ
is elliptic of order µ; 0 in the sense of Definition 7 below. Writing
✁
∈
µ, d;δ
cl n
+
; N
−
, N
+
in the form 38 we set σ