318 D. Kapanadze – B.-W. Schulze
iii
l
χ
≍
x = νx1 − ωx for ω = ˜ ω|
n +
for some ˜ ω ∈
C
∞ n
, 0 ≤ ˜ ω
x ≤ 1 for all x ∈
n
and ˜ ω
x = 1 in a neighbourhood of x = 0 and ν = ̹|
n +
for some ̹ ∈
C
∞ n
\ 0 with ̹λx = ̹x for all λ ∈
+
, x ∈
n
\ 0, such that for some y ∈
n−1
with |y| = 1, and certain 0 ε ˜ε
1 2
we have ̹x = 1 for all x ∈ S
n−1
∩
n +
with |x − y| ε and ̹x = 0 for all x ∈ S
n−1
∩
n +
with |x − y| ˜ε. For ax, ξ ∈ S
µ;δ cl
ξ ; x
n +
×
n
and any local or global admissible cut-off function χ
≍
we then get a decomposition
ax, ξ = χ
≍
xax, ξ + 1 − χ
≍
xax, ξ where a
≍
x, ξ := χ
≍
xax, ξ ∈ S
µ;δ cl
ξ ; x
n +
×
n ≍
and 1 − χ
≍
xax, ξ ∈ S
µ;δ cl
ξ ; x
n +
×
n
. R
EMARK
11. The operator of multiplication M
χ
≍
by any χ
≍
∈ C
∞ n
with χ
≍
λ x =
χ
≍
x for all |x| R for some R 0 and λ ≥ 1, can be regarded as an element in L
0;0 cl
n
. In other words, we have M
χ
≍
A, A M
χ
≍
∈ L
µ;δ cl
n
for every A ∈ L
µ;δ cl
n
. If χ
≍
and ˜ χ
≍
are two such functions with supp χ
≍
∩ supp ˜ χ
≍
= ∅ we have χ
≍
A ˜ χ
≍
∈ L
−∞;−∞ n
for arbitrary A ∈ L
µ;δ cl
n
. A similar observation is true in the operator-valued case.
3.3. Green symbols
Pseudo-differential boundary value problems are described by a symbol structure that reflects an analogue of Green’s function and generates boundary and potential conditions of elliptic
boundary value problems. This is summarized by the following definition.
D
EFINITION
4. The space
µ, 0;δ
G n−1
×
n−1
; N
−
, N
+
of Green symbols of order µ ∈
, type 0 and weight δ ∈ is defined to be space of all operator-valued symbols
gy, η ∈ S
µ;δ cl
η
n−1
×
n−1
; L
2 +
⊕
N
−
,
✁
+
⊕
N
+
such that g
∗
y, η ∈ S
µ;δ cl
η
n−1
×
n−1
; L
2 +
⊕
N
+
,
✁
+
⊕
N
−
. Moreover, the space
µ, d;δ
G n−1
×
n−1
; N
−
, N
+
of Green symbols of order µ ∈ ,
type d ∈
✁
and weight δ ∈ is defined to be the space of all operator families of the form
gy, η = g y, η +
d
X
j =1
g
j
y, η ∂
j t
29 for arbitrary g
j
∈
µ− j,0;δ
G n−1
×
n−1
; N
−
, N
+
, j = 0, . . . , d. P
ROPOSITION
3. Every gy, η ∈
µ, d;δ
G n−1
×
n−1
; N
−
, N
+
belongs to S
µ;δ cl
η
n−1
×
n−1
; H
s +
⊕
N
−
,
✁
+
⊕
N
+
for every real s d −
1 2
.
Boundary value problems 319
The specific aspect in our symbol calculus near exits to infinity consists of classical el- ements, here with respect to y ∈
n−1
. Let
µ, d;δ
G,cl n−1
×
n−1
; N
−
, N
+
denote the subspace of all gy, η ∈
µ, d;δ
G n−1
×
n−1
; N
−
, N
+
of the form 29 for g
j
y, η ∈
µ− j,0;δ
G,cl n−1
×
n−1
; N
−
, N
+
, where
µ, 0;δ
G,cl n−1
×
n−1
; N
−
, N
+
is defined to be the space of all
gy, η ∈ S
µ;δ cl
η; y
n−1
×
n−1
; L
2 +
⊕
N
−
,
✁
+
⊕
N
+
with g
∗
y, η ∈ S
µ;δ cl
η; y
n−1
×
n−1
; L
2 +
⊕
N
+
,
✁
+
⊕
N
−
. Similarly to Proposition 3 we have
µ, d;δ
G,cl n−1
×
n−1
; N
−
, N
+
⊂ S
µ;δ cl
η; y
n−1
×
n−1
; H
s +
⊕
N
−
,
✁
+
⊕
N
+
30 for all s d −
1 2
. Applying 18 we then get the triple of principal symbols σ
g = σ
∂
g, σ
e
′
g, σ
∂, e
′
g .
31 R
EMARK
12. There is a direct analogue of Remark 5 in the framework of Green symbols that we do not repeat in this version in detail. Let us only observe that we can recover gy, η
from 31 mod
µ− 1,d;δ−1
G,cl n−1
×
n−1
; N
−
, N
+
by χ ησ
∂
gy, η+χ y{σ
e
′
gy, η− χ ησ
∂, e
′
gy, η} ∈
µ, d;δ
G,cl n−1
×
n−1
; N
−
, N
+
. L
EMMA
1. Let φ y, t ∈ C
∞ q
×
+
and assume that for some δ ∈ the following
estimates hold: sup
t ∈
+
|D
α y
φ y, t | ≤ chyi
δ−|α|
for all y ∈
q
and all α ∈
✁
q
, with constants c = ca 0. Then the operator M
φ y,t
of multiplication by φ y, t fulfils the relation M
φ y,t
∈ S
0;δ q
×
q
; L
2 +
, L
2 +
. 32
Proof. We have to check the symbol estimates κ
−1
η n
D
α y
D
β η
M
φ y,t
o κη
✂
L
2 +
≤ chyi
δ−|α|
for all α, β ∈
✁
q
and all y, η ∈
q
×
q
with suitable c = cα, β 0. Because M
φ y,t
is in- dependent of η it suffices to consider β = 0. Using κ
−1
η D
α y
M
φ y,t
κη = D
α y
M
φ y,t hyi
− 1
we get for u ∈ L
2 +
κ
−1
η n
D
α y
D
β η
M
φ y,t
o κη
ut
L
2 +
= D
α y
φ y, t hyi
−1
ut
L
2 +
≤ sup
t ∈
+
D
α y
φ y, t hyi
−1
kuk
L
2 +
≤ chyi
δ−|α|
kuk
L
2 +
.
320 D. Kapanadze – B.-W. Schulze
L
EMMA
2. Let φ y, t ∈ C
∞ q
×
+
be a function such that there are constants m, δ ∈ such that sup
t ∈
+
D
α y
D
M t
φ y, t
≤ chyi
δ−|α|
ht i
m−M
for all y ∈
q
, t ∈
+
and all α ∈
✁
q
, M ∈
✁
, with constants c = cα, M 0. Then we have M
φ y,t
∈ S
0,δ q
×
q
;
✁
+
,
✁
+
. 33
Proof. Let us express the Schwartz space as a projective limit
✁
+
= proj lim ht i
−k
H
k +
: k ∈
✁
. An operator b is continuous in
✁
+
if for every k ∈
✁
there is an l = lk ∈
✁
such that kbk
✂
ht i
− l
H
l +
,h t i
− k
H
k +
≤ c for certain c = ck, l 0. The symbol estimates for 33 require for every k ∈
✁
an l = lk ∈
✁
such that κ
−1
η n
D
α y
M
φ y,t
o κη
u
ht i
− k
H
k +
≤ chyi
δ−|α|
kuk
ht i
− l
H
l +
, 34
for constants c 0 depending on k, l, α, for all α and k. Similarly to the proof of Lemma 1 the η
-derivatives may be ignored. Estimate 34 is equivalent to hti
k
D
α y
φ y, t hηi
−1
ht i
−l
v
H
k +
≤ chyi
δ−|α|
kvk
H
l +
35 for all v ∈ H
l +
. Setting l = k + m
+
for m
+
= maxm, 0 we get 35 from the system of simpler estimates
D
j t
n ht i
−m
+
D
α y
φ y, t hηi
−1
v t
o
L
2 +
≤ chyi
δ−|α|
kvk
H
l +
for all 0 ≤ j ≤ k. The function D
j t
ht i
−m
+
D
α y
φ y, t hηi
−1
v t
is a sum of expressions of the form
v
j
1
j
2
j
3
t = cht i
−m
+
− j
1
hηi
− j
2
D
j
2
t
D
α y
φ y, t hηi
−1
D
j
3
t
v t
for j
1
+ j
2
+ j
3
= j and constants c = c j
1
, j
2
, j
3
. We now employ the assumption on φ
, namely sup
t ∈
+
D
α y
D
j
2
t
φ y, t hηi
−1
≤ hyi
δ−|α|
ht hηi
−1
i
m− j
2
. Using ht hηi
−1
i
m− j
2
≤ ht i
m− j
2
for m − j
2
≥ 0 and ht hηi
−1
i
m− j
2
≤ 1 for m − j
2
0 we immediately get kv
j
1
j
2
j
3
t k
L
2 +
≤ chηi
δ−|α|
D
j
3
t
v
L
2 +
for all y ∈
q
, with different constants c 0. This gives us finally the estimates 35.
3.4. The algebra of boundary value problems