In addition, employing more than one relevant organ of M. edulis for determining the pesticides effects using the ChE activity can generate more comprehensive
understanding on how each organ of mussels react to the pesticides that enter their body. Finally, the strategy that uses battery of relevant organs not only refines the
application of the selected biomarkers in laboratory trials and field scales, but also enhances its potential competency to reveal the consequence of pesticides
exposures in ecological stages.
3.6. References
Aiello, E. 1990. Nervous control gill ciliary activity in Mytilus edulis. In Stefano GB, editor. Neurobiology of Mytilus edulis. Manchester University Press.
Menchester UK: pp. 189-208. Anandraj, A., D.J. Marshall, M.A. Gregory, and T.P. McClurg. 2002. Metal
accumulation, filtration and O
2
uptake rates in the mussel Perna perna Mollusca:Bivalvia exposed to H
2+
, Cu
2+
and Zn
2+
. Comp. Biochem. Physiol. C. 132:255-363.
Baird, D.J., S. Brown,` L. Lagadic, M. Liess, L. Maltby, M.M. Santos, R. Schulz, G.I. Scott. 2007. In situ-based effects measurement: Determining the
ecological relevance of measured responses. Integr. Environ. Assess. Manag. 3:259-267.
Belden, J.B, and M.J. Lydy. 2000. Impact of atrazine on organophosphate insecticide toxicity. Environ. Toxicol. Chem. 19:2266–2274.
Bocquene, G., F. Gaglani, P. Truquet. 1990. Characterization and assay conditions for use of AChE activity from several marine species in
pollution monitoring. Mar. Environ. Res. 30:75–89. Brewer, S.K., E.E. Little, A.J. DeLonay, S.L. Beauvais, S.B. Jones, and M.R.
Ellersieck. 2001. Behavioral dysfunction correlate to altered physiology in rainbow trout Oncorynchus mykiss exposed to cholinesterase-
inhibiting chemicals. Arc. Environ. Contam .Toxicol 40:70-76. Brown, M., I.M .Davies, C.F. Moffat, J. Redshaw, J.A. Craft. 2004.
Characteristic of choline esterases and their tissue and subcellular distribution in mussel Mytilus edulis. Mar. Environ. Res. 57:155-169.
Canty, M.N., J.A. Hagger, R.T.B. More, L. Cooper, and T.S. Galloway. 2007. Sublethal impact of short term exposure to the organophosphate pesticide
azamethiphos in the marine Mollusc Mytilus edulis. Mar. Poll. Bull. 54:396-402.
Chang, M.S., and G.R. Strichartz. 2005. Cholinergic phamacology. In D.E. Golan, A.H. Tashjian, E.J. Armstrong, J.M. Galanter, A.W. Armstrong,
R.A. Arnout, and H.S. Rose [Editors]. Principles of pharmacology: The pathophysiologic basis of drug therapy. Lippincott Williams Wilkins.
Baltimore, USA: pp. 89-103.
Cooper, N.L., and J.R. Bidwell. 2006. Cholinesterase inhibition and impacts on behavior of the Asian clam, Corbicula fluminea, after exposure to an
organophosphate insecticide. Aquat. Toxicol. 40:23-36.
Coughlan, J. 1969. The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2: 356–358.
De Zwaan, A., and Mathieu M. 1992. Cellular energy metabolism in the mytilidae: An overview. In E. Gosling, editor. The mussel Mytilus:
Ecology, physiology, genetics and culture. Elsevier Science Publishers B.V. Amsterdam: pp. 223-307.
Dizer, H., B. Fischer, A.S.A. Harabawy, M.-C. Hennion, and P.-D. Hansen. 2001. Toxicity of domoic acid in the marine mussel Mytilus edulis. Aquat.
Toxicol. 55:149-156. Donkin, P., J. Widdows, S.E. Evans, F.J. Staff, and T. Yan. 1997. Effect of
neurotoxic pesticide on the feeding rate of marine mussels Mytilus edulis. Pestic.Sci 49: 196-209.
Ellman, G.L., K.D. Courtney, V.Jr. Andres, and R.M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity.
Biochem. Pharmocol. 7:88-95. Escartin, E., and C. Porte. 1997. The use of cholinesterase and carboxylesterase
activities from Mytilus Galloprovincialis in pollution monitoring. Environ. Toxicol. Chem. 16: 2090-2095.
Gaglani, F., and Bocqueme G. 2000. Molecular biomarkers of exposure of marine organisms to organophosphorus pesticide and carbamates. In L.
Lagadic, Th. Caquet, J-C. Amiard, F. Ramade [Editors]. Use of biomarkers for environmental quality assessment. Science Publishers, Inc.
USA: pp. 113 – 137.
Galloway, T.S., N. Millward, M.A. Browne, M.H. Depledge. 2002. Rapid assessment of organophosphorouscarbamate exposure in the bivalve
mollusc Mytilus edulis using combined esterase activities as biomarkers. Aquat. Toxicol. 61:169-180.
Gosling, E. 2003. Bivalve Molluscs; Bilogy, Ecology and Culture. Fishing News Books. Oxford.
Gregory, M.A., D.J. Marshall, R.C. George, A. Anandraj, and T.P. McClurg. 2002. Correlation between metal uptake in the soft tissue of Perna perna
and gill filament after exposure to mercury. Mar.Poll. Bull 45:114-125. Grue, C.E., S.C.,Gardner, and P.L. Gibert. 2002. On the siginificant of polluted-
induced alterations in the behaviour of fish and wildlife. In G. Dell’Omo, editor. Behavioural ecotoxicology. John Willey Sons Ltd. West
Sussex, UK: pp. 1-90. Herbert, A., L. Guilhemino, H.C.S. de Asis, and P.-D. Hansen 1995.
Acetylcholinesterase activity in aquatic organisms as pollution biomarker. Z. Angewandte ,Zoo. 3:1-15.
Hermsen, W., I. Sims, M. Crane. 1994. The bioavailability and toxicity to Mytilus edulis L. of two organochlorine pesticides adsorbed to suspended
solids. Mar. Environ. Res. 38: 61-69 Jørgensen, C.B., P.S. Laren, F. Mohlenberg, H.U. Riisgard. 1988. The mussel
pump: properties and modelling. Mar. Ecol. Prog. Ser. 45: 205–216. Kopecka, J., A. Rybakowas, J. Barsiene, J. Pempkowiak. 2004. AChE levels in
mussels and fish collected off Lithuania and Poland Southern Baltic. Ocenologia 46:405-418.
Lagadic, L., Th. Caquet, and F. Ramade. 1994. The role of biomarkers in environmental assessment 5. Invertebrate populations and communities.
Ecotoxicology 3:193-208. McHenery, J.G., G.E. Linley-Adams, D.C. Moore, and G.K. Rodger. 1997.
Experimental and field study of effects of dichlorvos exposure on acetylcholinesterase activity in the gills of the mussel, Mytilus edulis L.
Aquat. Toxicol. 38:125-143. Mora, P., D. Fournier, and J.-F. Narbonne. 1999b. Cholinesterases from the
marine mussels Mytilus galloprovincialis Lmk. and M. edulis L. and from the freshwater bivalve Corbicula fluminea Müller. Comp. Biochem.
Physiol. C. 122:353–361. Mora, P., X. Michel, and J.-F. Narbonne. 1999a. Cholinesterase activity as
potential biomarker in two bivalves. Environ. Toxicol. Pharmacol. 7:253- 260.
Moralev, S.N., E.V. Rozengart. 2004. Comparative sensitivity of cholinesterases
of different origin to some irreversible inhibitors. J. Evol. Biochem. Physiol. 40:1-17.
Moreira, S.M., J. Coimbra, L. Guilhermino. 2001. Acetylcholinesterase of Mytilus galloprovincialis LmK. Hemolymph: A suitable environmental
biomarker. Bull. Environ. Contam. Toxicol. 67: 470 – 475. Newell, C.R., D.J. Wildish, and B.A. MacDonald. 2001. The effects of velocity
and seston concentration on the exhalant siphon area, valve gape and filtration rate of the mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol.
262:91-111 Peakall, D. 1992. Animal biomarkers as pollution indicators. Chapman Hall.
London: Peakall, D.B., H.Thompson. and E.Baatrup. 2002. Relationship between
behaviour and the biochemicalphysiological biomarkers of exposure to environmental pollutants. In G. Dell’Omo [Editor]. Behavioural
ectoxicology. John Wiley Sons Ltd. West Sussesex, UK: pp. 187-208. Post, G., and R.A. Leasure. 1974. Sublethal effect of malathion to three salmonid
species. Bull. Environ. Contam. Toxicol. 12:312-319. Ray, D. 1998. Organophosphorus esters : an evaluation of chronic neurotoxic
effects. Institute for Environment and Health University of Leicester. Leicester UK. Report.
Redpath, K.J, and J. Davenport. 1988. The effect of copper, zinc and cadmium on the pumping rate of Mytilus edulis L. Aquat. Toxicol. 13:217-226.
Rickwood, C.J., and T.S. Galloway. 2004. Acetylcholinesterase inhibition as a biomarker of adverse effect: A study of Mytilus edulis exposed to the
priority pollutant chlorfenvinphos. Aquat. Toxicol. 67:45-56. Sandahl JF, D.H. Baldwin, J.J. Jenkins, N.L. Scholz. 2005. Comparative
thresholds for acetylcholinesterase and behaviour impairement in coho salmon exposed to chlorphyrifos. Environ. Toxicol. Chem. 24: 136 – 145.
Scholz, N.L., and W.A. Hopkins. 2006. Ecotoxicology of anticholinesterase pesticides: data gaps and research challenges. Environ. Toxicol. Chem. 25:
1185–1186.
Sibley, P.K., M.J. Chappel, T.K. George, K.R. Solomon, K. Liber. 2000. Integrating effects of stressors across levels of biological organization
:example using organophosphorus insecticide mixtures in field-level exposures. J. Aquat. Ecosyst. Stress. Recov. 7: 117-130.
Toro, B., J.M. Navarro, and H.P. Fleming. 2003. Use of clearance rate in Choromytilus chorus Bivalvia: Mytilidae as a non-destructive biomarker
of aquatic pollution. Revista. Chilena. de Historia. Natural. 76:267-274. Torre, D.F.R., L. Ferrari, A. Salibian. 2002. Freshwater pollution biomarker:
response of brain acetylcholinesterase activity in two fish species. Comp. Biochem. Physiol. C 131:271-280.
Wachtendonk von, D., and J. Neef. 1979. Isolation, perufication and molecular properties of an acetylcholinesterase E.C. 3.1.1.7 from the haemolymph
of the sea mussel Mytilus edulis. Comp. Biochem. Physiol. 63C: 279 – 286.
Widdows, J., D.S. Page. 1993. Effects of tributyltin and dibutyltin on the physiological energetic of the mussel, Mytilus edulis. Mar. Environ.
Res.35:233-249. Widdows, J., P. Donkin. 1992. Mussels and environmental contaminants:
Bioaccumulation and physiological aspects. In E. Gosling [Editor]. The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier
Science Publishers B.V. Amsterdam: pp. 383-424. Wu, R.S.S., W.H.L. Siu, and P.K.S. Shin. 2005. Induction, adaptation and
recovery of biological responses: Implications for environmental monitoring. Mar. Poll. Bull. 51:623–634.
IV. CHARACTERIZATION OF CHOLINESTERASE ACTIVITY IN GREEN MUSSEL
Perna viridis AS A POTENTIAL BIOMARKER IN MARINE BIOMONITORING
4.1. Abstract