Analisis Kadar Nitrat (NO3) Dan Nitrit (NO2) Dari Limbah Cair Industri Karet Dengan Menggunakan Spektrofotometer Pada Balai Riset Standardisasi Industri Medan

(1)

ANALISIS KADAR NITRAT (NO3) DAN NITRIT (NO2)

DARI LIMBAH CAIR INDUSTRI KARET DENGAN MENGGUNAKAN SPEKTROFOTOMETER

PADA BALAI RISET STANDARDISASI INDUSTRI MEDAN

KARYA ILMIAH

AFRILA RIZKY LUBIS 082401025

PROGRAM STUDI DIPLOMA-3 KIMIA ANALIS DEPARTEMEN KIMIA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA

MEDAN 2011


(2)

ANALISIS KADAR NITRAT (NO3) DAN NITRIT (NO2)

DARI LIMBAH CAIR INDUSTRI KARET DENGAN MENGGUNAKAN SPEKTROFOTOMETER

PADA BALAI RISET STANDARDISASI INDUSTRI MEDAN

KARYA ILMIAH

Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Ahli Madya

AFRILA RIZKY LUBIS 082401025

PROGRAM STUDI DIPLOMA-3 KIMIA ANALIS DEPARTEMEN KIMIA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA

MEDAN 2011


(3)

PERSETUJUAN

Judul : ANALISIS KADAR NITRAT (NO3) DAN NITRIT (NO2) DARI LIMBAH CAIR INDUSTRI KARET DENGAN MENGGUNAKAN SPEKTROFOTO METER PADA BALAI RISET STANDARDISASI INDUSTRI MEDAN

Kategori : KARYA ILMIAH Nama : AFRILA RIZKY LUBIS Nomor Induk Mahasiswa : 082401025

Program Studi : DIPLOMA (D3) KIMIA ANALIS Departemen : KIMIA

Fakultas : MATEMATIKA DAN ILMU PENGETAHUAN

ALAM (FMIPA) UNIVERSITAS SUMATERA UTARA

Disetujui di Medan, Juli 2011

Diketahui / Disetujui oleh Dosen Pembimbing Ketua Jurusan D3 Kimia Analis

Dra.Emma Zaidar Nasution, M.Si (Prof.Dr.Harry Agusnar.Msc, M.Phill) NIP : 195408301985032001 NIP : 195308171983031022

Mengetahui

Departemen Kimia FMIPA USU Ketua,

Dr. Rumondang Bulan, MS NIP. 195408301985032001


(4)

PERNYATAAN

ANALISIS KADAR NITRAT (NO3) DAN NITRIT (NO2) DARI LIMBAH CAIR INDUSTRI KARET DENGAN MENGGUNAKAN SPEKTROFOTOMETER

PADA BALAI RISET STANDARDISASI INDUSTRI MEDAN

KARYA ILMIAH

Saya mengakui bahwa tugas akhir ini adalah hasil kerja saya sendiri,kecuali beberapa kutipan dan ringkasan yang masing – masing disebutkan sumbernya.

Medan, Juli 2011

AFRILA RIZKY LUBIS


(5)

PENGHARGAAN

Puji Syukur Alhamdulillah, penulis panjatkan kehadirat Allah SWT atas segala Rahmat dan Karunia-Nya sehingga penulis dapat menyelesaikan karya ilmiah yang diberi judul “ANALISIS KADAR NITRAT (NO3) DAN NITRIT (NO2) DARI

LIMBAH CAIR INDUSTRI KARET DENGAN MENGGUNAKAN

SPEKTROFOTOMETER PADA BALAI RISET STANDARDISASI INDUSTRI MEDAN’’. Karya ilmiah ini disusun untuk melengkapi salah satu persyaratan agar dapat menyelesaikan pendidikan Diploma 3 Kimia Analis. Dalam kesempatan ini, penulis mengucapkan terimakasih yang sedalam-dalamnya kepada kedua orang tua penulis ayahanda Arwin Lubis,S.Pd dan ibunda Juniarsih,S.Pd yang memberikan kasih sayang dan doa restunya kepada penulis serta dukungan baik secara materi maupun moril sehingga dapat menghantarkan penulis dalam menyelesaikan

pendidikan ini.

Selama penulisan karya ilmiah ini, penulis banyak mendapatkan bantuan dan bimbingan dari berbagai pihak. Untuk itu penulis mengucapkan terimakasih yang sebesar-besarnya kepada :

1. Bapak Prof.Dr.Harry Agusnar, MSc.M.Phill, selaku Dosen Pembimbing yang telah memberikan bimbingan dan pengarahan selama penulisan karya ilmiah ini.

2. Ibu Dr. Rumondang Bulan Nasution Nst, MS, selaku Ketua Departemen Kimia FMIPA USU.

3. Seluruh Dosen dan Staff Administrasi Jurusan Kimia Analis FMIPA USU yang telah membantu penulis selama masa perkuliahan.

4. Seluruh rekan-rekan mahasiswa Kimia Analis khususnya angkatan 2008 yang namanya tidak dapat disebutkan satu per satu.

Atas segala bantuan, penulis hanya dapat berdoa dan memohon semoga Allah SWT memberikan balasan segala kebaikan dari berbagai pihak yang telah banyak membantu dalam penulisan karya ilmiah ini. Penulis menyadari karya ilmiah ini masih jauh dari kesempurnaan, untuk itu dengan segala kerendahan hati penulis mengharapkan kritik dan saran dari berbagai pihak.

Akhir kata, penulis berharap semoga karya ilmiah ini dapat bermanfaat bagi pembaca.

Medan, Juli 2011 Penulis


(6)

ANALISIS KADAR NITRAT (NO3) DAN NITRIT (NO2) DARI LIMBAH CAIR INDUSTRI KARET DENGAN MENGGUNAKAN SPEKTROFOTOMETER

PADA BALAI RISET STANDARDISASI INDUSTRI MEDAN

ABSTRAK

Banyak air sungai sekarang yang tidak dapat begitu saja digunakan, karena tercemar oleh kegiatan manusia. Sumber pencemarannya dapat berupa limbah domestik ataupun limbah non domestik yang berbentuk cair. Limbah cair yang dibuang ke sungai, jika berlebihan dapat menyebabkan kerusakan lingkungan. Salah satu zat kimia yang terkandung didalam air limbah adalah Nitrat (NO3) dan Nitrit. (NO2). Nitrat (NO3) dan Nitrit (NO2) merupakan suatu senyawa kimia yang bersifat toksik terhadap lingkungan. Pada analisis ini ditentukan kadar nitrat dan nitrit pada limbah karet secara spektrofotometer. Dari analisis yang telah dilakukan diperoleh hasil untuk kadar Nitrat (NO3) adalah 1,6 mg/L ; 7,3 mg/L dan 35,6 mg/L, sedangkan untuk kadar Nitrit (NO2) adalah 0,053 mg/L ; 0,062 mg/L dan 0,109 mg/L. Dari hasil tersebut diketahui bahwa limbah cair dari industri karet pada minggu ketiga melebihi baku mutu yang telah ditetapkan oleh Menteri Lingkungan Hidup No 51 Tahun 1995 yakni 20 mg/L untuk Nitrat (NO3) dan untuk Nitrit (NO2) 1 mg/L.


(7)

ANALYSIS OF LEVEL OF NITRATE (NO3) AND NITRIT (NO2) FROM WASTE RUBBER BY SPECTROPHOTOMETER AT BALAI RISET

STANDARDISASI INDUSTRI MEDAN

ABSTRACT

Many rivers now that can not simply be used, because of contamination by human activities. Sources of sewage pollution can be either domestic or non domestic waste is a liquid. Liquid waste is discharged into the river, if excessive can cause environmental damage. One of the chemicals contained in waste water is Nitrate (NO3) and Nitrite (NO2). Nitrate (NO3) and Nitrite (NO2) is a chemical compound that is toxic to the environment. In this analysis, determination of nitrate and nitrite in the waste rubber spectrophotometer. From analysis of obtained results has been done for levels of Nitrate (NO3) was 1,6 mg / L ; 7,3 mg / L and 35,6 mg / L, while for the levels of Nitrite (NO2) is 0,053 mg / L ; 0,062 mg / L and 0,109 mg / L. From the results it is known that liquid waste from the rubber industry in the third week exceeds the quality standard set by the Minister of Environment No 51 in 1995 that is 20 mg / L for Nitrate (NO3) and Nitrite (NO2) 1 mg / L.


(8)

DAFTAR ISI

Halaman

PERSETUJUAN i

PERNYATAAN ii

KATA PENGANTAR iii

ABSTRAK iv

ABSTRACK v

DAFTAR ISI vi

DAFTAR TABEL viii

BAB 1 PENDAHULUAN 1

1.1 Latar Belakang 1

1.2 Permasalahan 2

1.3 Tujuan 3

1.4 Manfaat 3

BAB 2 TINJAUAN PUSTAKA 4 2.1. Air 4

2.1.1 Sumber Air 4

2.1.2 Sifat Air 6

2.1.3 Pencemaran Air 8

2.1.4 Aspek Kimia – Fisika Pencemar Air 8

2.2 Nitrogen 9

2.2.1. Nitrogen Organik dan Anorganik 10

2.2.2 Nitrat dan Nitrit 11

2.3. Limbah Industri 12

2.3.1. Kualitas Limbah 13

2.3.2.Karakteristik Limbah Cair 13

2.4 Spektrofotometer 14

2.4.1. Peralatan (instrumentasi) 15 BAB 3 METODOLOGI PENELITIAN 17 3.1 Alat dan Bahan 17

3.1.1 Alat – alat 18

3.1.2 Bahan 18

3.2 Prosedur Penelitian 18

3.2.1 Penyediaan Larutan Pereaksi 18

3.2.2 Penyediaan Larutan Standart 20

3.2.3 Pembuatan Kurva Kalibrasi 22 3.2.4 Perlakuan Pada Sampel 24

BAB 4 DATA DAN PEMBAHASAN 25

4.1 Hasil 25

4.2 Penentuan Nitrat 27

4.2.1 Penurunan persamaan garis regresi untuk larutan standart nitrat 27


(9)

4.3.1 Penurunan persamaan garis regresi untuk larutan standart nitrit 30

4.4 Pembahasan 32

BAB 5 KESIMPULAN DAN SARAN 34

5.1. Kesimpulan 34

5.2. Saran 34

DAFTAR PUSTAKA 35


(10)

DAFTAR TABEL

Halaman Tabel 1 Data Penentuan Kadar Nitrat Pada Sampel 26 Tabel 2 Data Penentuan Kadar Nitrit Pada Sampel 26 Tabel 3 Data Absorbansi Larutan Standart Nitrat (NO3) 27

Berdasarkan Hasil Percobaan

Tabel 4 Data Absorbansi Larutan Standart Nitrit (NO2) 27 Berdasarkan Hasil Percobaan


(11)

DAFTAR LAMPIRAN

Halaman Lampiran 1 : KEP – 51/ MENLH/ 10/ 1995 Baku Mutu Limbah 36

Cair Bagi Kegiatan Industri

Lampiran 2 : Grafik Kurva Kalibrasi Larutan Standart Nitrat 37 Lampiran 3 : Grafik Kurva Kalibrasi Larutan Standart Nitrit 38


(12)

ANALISIS KADAR NITRAT (NO3) DAN NITRIT (NO2) DARI LIMBAH CAIR INDUSTRI KARET DENGAN MENGGUNAKAN SPEKTROFOTOMETER

PADA BALAI RISET STANDARDISASI INDUSTRI MEDAN

ABSTRAK

Banyak air sungai sekarang yang tidak dapat begitu saja digunakan, karena tercemar oleh kegiatan manusia. Sumber pencemarannya dapat berupa limbah domestik ataupun limbah non domestik yang berbentuk cair. Limbah cair yang dibuang ke sungai, jika berlebihan dapat menyebabkan kerusakan lingkungan. Salah satu zat kimia yang terkandung didalam air limbah adalah Nitrat (NO3) dan Nitrit. (NO2). Nitrat (NO3) dan Nitrit (NO2) merupakan suatu senyawa kimia yang bersifat toksik terhadap lingkungan. Pada analisis ini ditentukan kadar nitrat dan nitrit pada limbah karet secara spektrofotometer. Dari analisis yang telah dilakukan diperoleh hasil untuk kadar Nitrat (NO3) adalah 1,6 mg/L ; 7,3 mg/L dan 35,6 mg/L, sedangkan untuk kadar Nitrit (NO2) adalah 0,053 mg/L ; 0,062 mg/L dan 0,109 mg/L. Dari hasil tersebut diketahui bahwa limbah cair dari industri karet pada minggu ketiga melebihi baku mutu yang telah ditetapkan oleh Menteri Lingkungan Hidup No 51 Tahun 1995 yakni 20 mg/L untuk Nitrat (NO3) dan untuk Nitrit (NO2) 1 mg/L.


(13)

ANALYSIS OF LEVEL OF NITRATE (NO3) AND NITRIT (NO2) FROM WASTE RUBBER BY SPECTROPHOTOMETER AT BALAI RISET

STANDARDISASI INDUSTRI MEDAN

ABSTRACT

Many rivers now that can not simply be used, because of contamination by human activities. Sources of sewage pollution can be either domestic or non domestic waste is a liquid. Liquid waste is discharged into the river, if excessive can cause environmental damage. One of the chemicals contained in waste water is Nitrate (NO3) and Nitrite (NO2). Nitrate (NO3) and Nitrite (NO2) is a chemical compound that is toxic to the environment. In this analysis, determination of nitrate and nitrite in the waste rubber spectrophotometer. From analysis of obtained results has been done for levels of Nitrate (NO3) was 1,6 mg / L ; 7,3 mg / L and 35,6 mg / L, while for the levels of Nitrite (NO2) is 0,053 mg / L ; 0,062 mg / L and 0,109 mg / L. From the results it is known that liquid waste from the rubber industry in the third week exceeds the quality standard set by the Minister of Environment No 51 in 1995 that is 20 mg / L for Nitrate (NO3) and Nitrite (NO2) 1 mg / L.


(14)

BAB I PENDAHULUAN

1.1 Latar Belakang

Pada dasarnya limbah adalah bahan yang terbuang dari suatu sumber aktivitas manusia maupun proses alam dan proses industri. Pada umumnya limbah cair industri dibuang melebihi kemampuan alam untuk menerima atau menampungnya, maka akan terjadi kerusakan lingkungan. Limbah adalah sampah dari suatu lingkungan masyarakat dan terutama terdiri dari air yang telah dipergunakan hampir 0,1 % dari padanya berupa benda - benda padat yang terdiri dari zat organik.

Pembuangan air limbah baik yang bersumber dari kegiatan domestik maupun industri kebadan air dapat menyebabkan pencemaran lingkungan apabila kualitas air limbah tidak memenuhi baku mutu limbah. Keberadaan limbah cair yang dihasilkan industri karet dinilai mengancam keberadaan sektor perikanan. Nitrat (NO3) adalah bentuk utama nitrogen di perairan alami dan merupakan nutrient utama bagi pertumbuhan tanaman dan algae. Nitrat (NO3) sangat mudah larut dalam air dan bersifat stabil. Senyawa ini dihasilkan dari proses oksidasi ammonia menjadi nitrit dan nitrat adalah proses yang penting dalam siklus nitrogen dan berlangsung pada kondisi anaerob. Oksidasi ammonia menjadi nitrit dilakukan oleh bakteri Nitrosomonas, sedangkan oksidasi nitrit menjadi nitrat dilakukan oleh bakteri Nitrobacter. Kedua jenis bakteri tersebut merupakan bakteri kemotrofik, yaitu bakteri yang mendapatkan energi dari proses kimiawi.


(15)

Diperaian, nitrit (NO2) biasanya ditemukan dalam jumlah yang sangat sedikit lebih sedikit dari pada nitrat, karena tidak stabil dengan keberadaan oksigen. Nitrit (NO2) merupakan bentuk peralihan anatara amonia dan nitrat. Reduksi nitrat oleh aktivitas mikroba pada kondisi anaerob yang merupakan proses yang biasa terjadi pada pengolahan limbah, juga menghasilkan amonia dan gas – gas lain. Keberadaan nitrit menggambarkan oksigen terlarut rendah. Sumber nitrit dapat berupa limbah industri dan limbah domestik. Garam nitrit digunakan sebagai penghambat terjadinya korosi pada industri. Pada manusia, konsumsi nitrit berlebihan akan mengakibatkan terganggunya proses pengikatan oksigen oleh hemoglobin darah, yang selanjutnya membentuk methemoglobin yang tidak mampu mengikat oksigen.

Berdasarkan analisa dan uraian diatas maka penulis merasa tertarik dan ingin membahas masalah tersebut dengan memilih judul yaitu : “Analisis Kadar Nitrat (NO3) dan Nitrit (NO2) dari Limbah Cair Industri Karet Dengan Menggunakan Spektrofotometer Pada Balai Riset Standardisasi Industri Medan’’.

I.2 Permasalahan

- Berapakah kadar Nitrat (NO3) dan Nitrit (NO2) yang diperoleh dari limbah cair industri karet.

- Apakah kadar Nitrat (NO3) dan Nitrit (NO2) yang diperoleh sesuai Keputusan Menteri Lingkungan Hidup No 51 Tahun 1995 Tentang Baku Mutu Limbah Cair Bagi Kegiatan Industri.


(16)

1.3 Tujuan

- Untuk mengetahui kadar nitrat (NO3) dan nitrit (NO2) dari limbah cair industri karet yang ada di Amplas.

I.4 Manfaat

- Memberikan informasi kepada masyarakat bahwa kadar nitrat (NO3) dan nitrit (NO2) untuk Baku Mutu Limbah Cair Bagi Kegiatan Industri yakni 20 mg/L untuk Nitrat (NO3) dan 1 mg/L untuk Nitrit (NO2) sesuai dengan Keputusan Menteri Lingkungan Hidup No 51 Tahun 1995.

- Dapat mengetahui cara analisis kadar nitrat (NO3) dan nitrit (NO2) dengan metode spektrofotometer UV-Visible.


(17)

BAB 2

TINJAUAN PUSTAKA

2.1 Air

Air merupakan sumber daya alam yang diperlukan untuk hajat hidup orang banyak, bahkan oleh semua makhluk hidup. Oleh karena itu, sumber daya air harus dilindungi agar tetap dapat dimanfaatkan dengan baik oleh manusia serta makhluk hidup lain. Saat ini, masalah utama yang dihadapi oleh sumber daya air meliputi kuantitas air yang sudah tidak mampu memenuhi kebutuhan yang terus meningkat dan kualitas air untuk keperluan domestik yang semakin menurun. Kegiatan industri, domestik, dan kegiatan lain berdampak negatif terhadap sumber daya air, antara lain menyebabkan penurunan kualitas air. Kondisi ini dapat menimbulkan gangguan, kerusakan, dan bahaya bagi semua makhluk hidup yang bergantung pada sumber daya air. Oleh karena itu, diperlukan pengelolaan dan perlindungan sumber daya air secara seksama (Effendi, 2003).

2.1.1 Sumber Air

Air yang berada di permukaan bumi ini dapat berasal dari berbagai sumber. Ber dasarkan letak sumbernya, air dapat dibagi menjadi air angkasa (hujan), air permukaan dan air tanah.

a. Air Angkasa

Air angkasa atau air hujan merupakan sumber utama air dibumi. Walaupun pada saat presipitasi merupakan air yang paling bersih, air tersebut cenderung mengalami pencemaran ketika berada diatmosfer.


(18)

Pencemaran yang berlangsung di atmosfer itu dapat disebabkan oleh partikel debu, mikroorganisme dan gas. Misalnya, karbondioksida, nitrogen dan ammonia.

b. Air Permukaan

Air permukaan yang meliputi badan – badan air semacam sungai, danau, telaga, waduk, rawa, terjun dan sumur permukaan, sebagian besar berasal dari air hujan yang jatuh ke permukaan bumi. Air hujan tersebut kemudian akan mengalami pencemaran baik oleh tanah, sampah maupun lainnya.

c. Air Tanah

Air tanah berasal dari air hujan yang jatuh kepermukaan bumi yang kemudian mengalami perkolasi atau penyerapan kedalam tanah dan mengalami proses filtrasi secara alamiah. Proses – proses yang telah dialami air hujan tersebut, didalam perjalanannya kebawah tanah, membuat air tanah menjadi lebih baik dan lebih murni dibandingkan air permukaan. Air tanah memiliki beberapa kelebihan dibandingkan sumber air lain. Pertama, air tanah biasanya bebas dari kuman penyakit dan tidak perlu mengalami proses purifikasi atau penyernihan. Persediaan air tanah juga cukup tersedia sepanjang tahun, saat musim kemarau sekalipun.(Chandra, 2005).

2.1.2 Sifat Air

Air memiliki karakteristik yang khas yang tidak dimiliki oleh senyawa kimia yang lain. Karakteristik tersebut adalah sebagai berikut :


(19)

1. Pada kisaran suhu yang sesuai bagi kehidupan, yakni 0°C (32°F) - 100°C, air berwujud cair. Suhu 0°C merupakan titik beku (freezing point) dan suhu 100°C merupakan titik didih (boiling point) air. Tanpa sifat tersebut, air yang terdapat didalam jaringan tubuh makhluk hidup maupun air yang terdapat dilaut, sungai, danau dan badan air yang lain akan berada dalam bentuk gas atau padatan ; sehingga tidak akan terdapat kehidupan di muka bumi, karena sekitar 60 % - 90 % bagian sel makhluk hidup adalah air.

2. Perubahan suhu air berlangsung lambat sehingga air memiliki sifat sebagai penyimpan panas yang sangat baik. Sifat ini memungkinkan air tidak menjadi panas atau pun dingin seketika. Perubahan suhu air yang lambat mencegah terjadinya stress pada makhluk hidup karena adanya perubahan suhu yang mendadak dan memelihara suhu bumi agar sesuai bagi makhluk hidup. Sifat ini juga menyebabkan air sangat baik sebagai pendingin mesin.

3. Air memerlukan panas yang tinggi dalam proses penguapan. Penguapan (evaporasi) adalah proses perubahan air menjadi uap air. Proses ini memerlukan energi panas dalam jumlah yang besar. Sebaliknya, proses perubahan uap air menjadi cairan (kondensasi) melepaskan energi panas yang besar. Pelepasan energi ini merupakan salah satu penyebab mengapa kita merasa sejuk pada saat berkeringat. Sifat ini juga merupakan salah satu faktor utama yang menyebabkan terjadinya penyebaran panas secara baik di bumi.


(20)

4. Air merupakan pelarut yang baik. Air mampu melarutkan berbagai jenis senyawa kimia. Air hujan mengandung senyawa kimia dalam jumlah yang sangat sedikit, sedangkan air laut dapat mengandung senyawa kimia hingga 35.000 mg/liter. Sifat ini memungkinkan unsur hara (nutrient) terlarut diangkut ke seluruh jaringan tubuh makhluk hidup dan memungkinkan bahan – bahan toksik yang masuk kedalam jaringan tubuh makhluk hidup dilarutkan untuk dikeluarkan kembali. Sifat ini juga memungkinkan air digunakan sebagai pencuci yang baik dan pengencer bahan pencemar (polutan) yang masuk kebadan air. 5. Air memiliki tegangan permukaan yang tinggi. Suatu cairan dikatakan

memiliki tegangan permukaan yang tinggi jika tekanan antar molekul cairan tersebut tinggi. Tegangan permukaan yang tinggi menyebabkan air memiliki sifat membasahi suatu bahan secara baik. Tegangan permukaan yang tinggi juga memungkinkan terjadinya sistem kapiler, yaitu kemampuan untuk bergerak dalam pipa kapiler (pipa dengan lubang yang kecil). Dengan adanya sistem kapiler dan sifat pelarut yang baik, air dapat membawa nutrient dari dalam tanah ke jaringan tumbuhan (akar, batang, dan daun). Adanya tegangan permukaan memungkinkan beberapa organisme, misalnya jenis – jenis insekta, dapat merayap di permukaan air.

6. Air merupakan satu – satunya senyawa yang merenggang ketika membeku. Pada saat membeku, air merenggang sehingga es memiliki nilai densitas (massa/volume) yang lebih rendah daripada air. Dengan demikian, es akan mengapung di air. Sifat ini mengakibatkan danau –


(21)

danau didaerah yang beriklim dingin hanya membeku pada bagian permukaan (bagian di bawah pemukaan masih berupa cairan) sehingga kehidupan organisme akuatik tetap berlangsung. Sifat ini juga dapat mengakibatkan pecahnya pipa air pada saat air di dalam pipa membeku. Densitas (berat jenis) air maksimum sebesar 1 g/cm3 terjadinya pada suhu 3,95 °C. Pada suhu lebih besar maupun lebih kecil dari 3,95 °C, densitas air lebih kecil dari satu (Effendi, 2003). 2.1.3 Pencemaran air

Pencemaran air adalah penyimpangan sifat – sifat air dari keadaan normal, bukan dari kemurniannya. Air yang tersebar di alam semesta tidak pernah terdapat dalam bentuk murni, namun bukan berarti bahwa semua air sudah tercemar. Menurut peruntukannya, air pada sumber air dapat dikategorikan menjadi empat golongan, yaitu :

1. Golongan A, yaitu air yang dapat digunakan sebagai air minum secara langsung tanpa diolah terlebih dahulu.

2. Golongan B, yaitu air yang dapat digunakan sebagai air baku untuk diolah sebagai air minum dan keperluan rumah tangga lainnya.

3. Golongan C, yaitu air yang dapat digunakan untuk keperluan perikanan dan peternakan.

4. Golongan D, yaitu air yang dapat digunakan untuk keperluan pertanian dan dapat digunakan untuk usaha perkotaan, industri dan listrik tenaga air.


(22)

2.1.4 Aspek Kimia-Fisika Pencemaran Air

Sifat-sifat kimia-fisika air yang umum diuji dan dapat digunakan untuk menentukan tingkat pencemaran air adalah :

1.Nilai pH, keasaman dan alkalinitas 2. Suhu

3. Oksigen terlarut 4. Karbondioksida bebas 5. Warna dan kekeruhan 6. Jumlah padatan 7. Nitrat

8. Amoniak 9. Fosfat

10. Daya Hantar Listrik

11. Klorida (Kristianto, 2002). 2.2 Nitrogen

Nitrogen dalam air limbah pada umumnya terdapat dalam bentuk organik dan oleh bakteri berubah menjadi amonia. Dalam kondisi aerobik dan dalam waktu tertentu bakteri dapat mengoksidasi amonia menjadi nitrit dan nitrat. Nitrat dapat digunakan oleh algae dan tumbuh – tumbuhan lain untuk membentuk protein tanaman dan oleh hewan untuk membentuk protein hewan. Perusakan protein tanaman dan hewan oleh bakteri menghasilkan amonia (Harry, 2008).


(23)

Nitrogen dan senyawanya tersebar secara luas dalam biosfer. Lapisan atmosfer bumi mengandung sekitar 78 % gas nitrogen. Bebatuan juga mengandung nitrogen. Pada tumbuhan dan hewan, senyawa nitrogen ditemukan sebagai penyusun dan klorofil. Meskipun ditemukan dalam jumlah yang melimpah dilapisan atmosfer, akan tetapi nitrogen tidak dapat dimanfaatkan oleh makhluk hidup secara langsung. Nitrogen harus mengalami fiksasi terlebih dahulu menjadi NH3, NH4, dan NO3. Meskipun demikian, bakteri Azetobacter dan Clostridium serta beberapa jenis algae hijau – biru, misalnya Anabaena, dapat memanfaatkan gas N2 secara langsung dari udara sebagai sumber nitrogen. 2.2.1 Nitrogen Organik dan Anorganik

Nitrogen anorganik terdiri dari gas ammonia (NH3), ammonium (NH4), nitrit (NO2), nitrat (NO3) dan molekul nitrogen (N2) dalam bentuk gas. Nitrogen organik berupa protein, asam amino, dan urea. Bentuk – bentuk nitrogen tersebut mengalami transformasi sebagai dari siklus nitrogen. Transformasi nitrogen dapat melibatkan atau pun tidak melibatkan makrobiologi dan mikrobiologi. Adapun tranformasi nitrogen mikrobiologis mencakup hal – hal sebagai berikut:

1. Asimilasi nitrogen anorganik (ammonium dan nitrat) oleh tumbuhan dan oleh mikroorganisme untuk membentuk nitrogen organik, misalnya asam amino dan protein. Diperairan, proses ini terutama dilakukan oleh bakteri autotrof dan tumbuhan.

2. Fiksasi nitrogen menjadi amoniak dan nitrogen organik oleh mikroorganisme. Fiksasi nitrogen secara langsung dapat dilakukan oleh beberapa jenis Cynophyta (blue green algae) dan bakteri.


(24)

3. Nitrifikasi, yaitu oksidasi ammonia menjadi nitrit dan nitrat. Proses oksidasi dilakukan oleh bakteri aerob. Nitrifikasi berjalan secara optimal pada pH 8 dan pada pH < 7 berkurang secara nyata. Bakteri nitrifikasi bersifat mesofilik, menyukai suhu 30°C.

4. Amonifikasi nitrogen organik untuk menghasilkan ammonia selama proses dekomposisi bahan organik. Proses ini banyak dilakukan oleh mikroba dan jamur. Autolisis sel dan eksresi amonia oleh zooplankton dan ikan juga berperan sebagai pemasok amonia.

5. Denitrifikasi, yaitu reduksi nitrat menjadi nitrit, denitrogen oksida (N2O), dan molekul nitrogen (N2). Proses reduksi nitrat berjalan optimum pada kondisi anoksik (tidak ada oksigen). Proses ini juga melibatkan bakteri dan jamur. Dinitrogen oksida adalah produk utama yang dihasilkan dari denitrifikasi pada perairan dengan kadar oksigen yang sangat rendah, sedangkan molekul nitrogen adalah produk utama dari proses denitrifikasi pada perairan dengan kondisi anaerob (Effendi, 2003).

2.2.2. Nitrat dan Nitrit

Nitrogen sebagai sumber nitrat terbanyak terdapat di udara, yaitu sebesar 78 % volume udara. Ada tiga tandon (gudang) nitrogen di alam. Yang pertama adalah udara; kedua, senyawa anorganik (nitrat, nitrit, amoniak) ; dan yang ketiga adalah senyawa organik (protein, asam urea). Hanya sedikit organisme yang dapat langsung memanfaatkan nitrogen udara. Tumbuhan dapat menghisap nitrogen dalam bentuk nitrat (NO3). Pengubahan dari nitrogen bebas diudara menjadi nitrat dapat dilakukan


(25)

secara biologis maupun kimia. Transformasi ini disebut fiksasi (pengikatan) nitrogen. Halilintar mengakibatkan fiksasi kimia nitrogen. Ledakan petir yang melalui udara memberikan cukup energi untuk menyatukan nitrogen dan oksigen membentuk nitrogen dioksida, NO2. Gas ini bereaksi dengan air membentuk asam nitrat, Nitrit amat beracun didalam air, tetapi tidak tahan lama. Kandungan nitrogen di dalam air sebaiknya dibawah 0,3 ppm. Kandungan nitrogen diatas jumlah tersebut mengakibatkan ganggang tumbuh subur. Jika kandungan nitrat didalam air mencapai 45 ppm maka berbahaya untuk diminum. Nitrat tersebut akan berubah menjadi nitrit di perut. Keracunan nitrit akan mengakibatkan wajah membiru dan kematian (Kristianto, 2002).

Nitrat adalah merupakan zat nutrisi yang dibutuhkan oleh tumbuhan untuk dapat tumbuh dan merupakan zat nutrisi yang dibutuhkan oleh tumbuhan untuk dapat tumbuh dan berkembang, sementara nitrit merupakan senyawa toksik yang dapat mematikan organisme air. Disamping itu nitrit dapat menyebabkan fungsi hemoglobin dalam transportasi oksigen terganggu (terutama pada bayi) dimana hemoglobin akan diubah menjadi methemoglobin yang mempunyai kemampuan yang rendah dalam mentransport oksigen. Selain itu nitrit bersama dengan gugus amin dari asam amino dapat membentuk nitrosoamin yang diduga kuat sebagai penyebab utama penyakit kanker (Alexander, 2004).

2.3 Limbah Industri

Limbah adalah buangan yang kehadirannya pada suatu saat dan tempat tertentu tidak dikehendaki lingkungan karena tidak memiliki nilai ekonomi.


(26)

Limbah yang mengandung bahan polutan yang memiliki sifat racun dan berbahaya dikenal dengan limbah B-3, yang dinyatakan sebagai bahan dalam jumlah relatif sedikit tetapi berpotensi untuk merusak lingkungan hidup dan sumber daya. Bila ditinjau secara kimiawi, bahan – bahan ini terdiri dari bahan kimia organik dan anorganik. Tingkat bahaya keracunan yang disebabkan oleh limbah tergantung pada jenis dan karakteristik limbah, baik dalam jangka pendek maupun jangka panjang.

2.3.1 Kualitas Limbah

Kualitas limbah menunjukkan spesifikasi limbah yang diukur dari jumlah kandungan bahan pencemar didalam limbah. Kandungan pencemar didalam limbah terdiri dari beberapa parameter. Semakin kecil jumlah parameter dan semakin kecil konsentrasinya, hal itu menunjukkan semakin kecilnya peluang untuk terjadinya pencemaran lingkungan. Beberapa kemungkinan yang akan terjadi akibat masuknya limbah kedalam lingkungan:

-Lingkungan tidak mendapat pengaruh yang berarti. Hal ini disebabkan karena volume limbah kecil, parameter pencemar yang terdapat dalam limbah sedikit dengan konsentrasi yang kecil.

-Adanya pengaruh perubahan, tetapi tidak mengakibatkan pencemaran. -Memberikan perubahan dan menimbulkan pencemaran.

Sedangkan faktor – faktor yang mempengaruhi kualitas limbah adalah : - Volume limbah

- Kandungan bahan pencemar - Frekuensi pembuangan limbah


(27)

2.3.2. Karakteristik Limbah Cair

Berdasarkan nilai ekonominya, limbah dibedakan menjadi limbah yang mempunyai nilai ekonomis dan limbah yang tidak memiliki nilai ekonomis. Limbah yang memiliki nilai ekonomis yaitu limbah di mana dengan melalui suatu proses lanjut akan memberikan suatu nilai tambah. Limbah non ekonimis adalah suatu limbah walaupun telah dilakukan proses lanjut dengan cara apapun tidak akan memberikan nilai tambah kecuali sekedar untuk mempermudah sistem pembuangan. Limbah jenis ini sering menimbulkan masalah pencemaran dan kerusakan lingkungan. Terdapat beberapa kerancuan dalam mengidentifikasi limbah cair, yaitu buangan air yang digunakan untuk mendinginkan mesin suatu pabrik.

Limbah air bersumber dari pabrik yang biasanya banyak menggunakan air dalam proses produksinya. Air dari pabrik membawa sejumlah padatan dan partikel, baik yang larut maupun yang mengendap. Bahan ini ada yang kasar dan ada yang halus. Kerap kali air buangan pabrik berwarna keruh dan bersuhu tinggi. Air limbah yang telah tercemar mempunyai ciri yang dapat diidentifikasi secara visual dari kekeruhan, warna, rasa, bau yang ditimbulkan dan indikasi lainnya. Sedangkan identifikasi secara laboratorium ditandai dengan perubahan sifat kimia air. Jenis industri yang menghasilkan limbah cair di antaranya adalah industri pulp dan rayon, pengolahan crumb rubber, besi dan baja, kertas, minyak goreng, tekstil, electroplating, polywood dan lain – lain (Kristianto, 2004).


(28)

2.4 Spektrofotometer

Spektrofotometer sesuai dengan namanya adalah alat yang terdiri dari spektrometer dan fotometer. Spektrometer menghasilkan sinar dari spektrum dengan panjang gelombang tertentu dan fotometer adalah alat untuk pengukur intensitas cahaya yang ditransmisikan atau yang diabsorpsi. Jadi spektrofotometer digunakan untuk mengukur energi secara reaktif jika energi tersebut ditransmisikan, direfleksikan atau diemisikan sebagai fungsi dari panjang gelombang. Kelebihan spektrofotometer dibandingkan fotometer adalah panjang gelombang dari sinar putih dapat lebih terseleksi dan ini diperoleh dengan alat pengurai seperti prisma, grating ataupun celah optis.

Pada fotometer filter, tidak mungkin diperoleh panjang gelombang yang benar – benar monokromatis, melainkan suatu trayek panjang gelombang 30 – 40 nm. Sedangkan pada spektrofotometer, panjang gelombang yang benar – benar terseleksi dapat diperoleh dengan bantuan alat pengurai cahaya seperti prisma. Suatu spektrofotometer tersusun dari sumber – sumber spektrum tampak yang kontinyu, monokromator, sel pengabsorpsi untuk larutan sampel atau blanko ataupun pembanding.

2.4.1. Peralatan (instrumentasi) 1. Sumber

Sumber yang biasa digunakan pada spektroskopi absorpsi adalah lampu wolfram. Arus cahaya tergantung pada tegangan lampu, i = K Vn = arus cahaya, V = tegangan, n = eksponen ( 3- 4 pada lampu wolfram), variasi tegangan masih dapat diterima 0,2 % pada suatu sumber DC, misalkan : baterai. Lampu hidrogen atau lampu deutrium digunakan


(29)

untuk sumber pada daerah UV. Kebaikan lampu wolfram adalah energi radiasi yang dibebaskan tidak bervariasi pada berbagai panjang gelombang. Untuk memperoleh tegangan yang stabil dapat digunakan transformator.

2. Monokromator

Digunakan untuk memperoleh sumber sinar yang monokomatis. Alatnya dapat berupa prisma ataupun grating. Untuk mengarahkan sinar monokromatis yang diinginkan dari hasil penguraian ini dapat digunakan celah. Jika celah posisinya tetap, maka prisma atau

gratingnya yang dirotasikan untuk mendapatkan λ yang diinginkan.

Ada dua tipe prisma yaitu susunan Cornu dan susunan Littrow.

Secara umum tipe Cornu menggunakan sudut 60°, sedangkan tipe Littrow menggunakan prisma dimana pada sisinya tegak lurus dengan arah sinar yang berlapis aluminium serta mempunyai sudut optis 30°.

3. Sel absorpsi

Pada pengukuran didaerah tampak kuvet kaca atau kuvet kaca corex dapat digunakan, tetapi untuk pengukuran pada daerah UV kita harus menggunakan sel kuarsa karena gelas tidak tembus cahaya pada daerah ini. Umumnya tebal kuvet adalah 10 mm, tetapi yang lebih kecil ataupun yang lebih besar dapat digunakan. Sel yang biasa yang digunakan berbentuk persegi, tetapi bentuk silinder juga dapat digunakan. Kita harus menggunakan kuvet yang tertutup untuk pelarut organik. Sel yang baik adalah kuarsa atau gelas hasil leburan serta seragam keseluruhannya.


(30)

4. Detektor

Peranan detektor penerima adalah memberikan respon terhadap cahaya pada berbagai panjang gelombang. Pada spektrofotometer, tabung pengganda elektron yang digunakan prinsip kerjanya telah diuraikan (Khopkar, 2003).


(31)

BAB 3

METODOLOGI PENELITIAN

3.1. Alat dan Bahan 3.1.1. Alat – alat

a. Alat untuk Nitrat (NO3)

- Spektrofotometer DR 2010 Hack

- Penangas air dilengkapi dengan pengatur suhu Memmert - Pipet volume 10 ml ; 20 ml dan 50 ml Pyrex

- Kaca arloji Pyrex

- Kuvet Pyrex

- Erlenmeyer 250 ml Pyrex

- Labu ukur 100 ml dan 1000 ml Pyrex

- Pipet ukur 10 ml Pyrex

- Neraca analitik Sartorius

- Botol akuades

b. Alat untuk Nitrit (NO2)

- Spektrofotometer DR 2010 Hack

- Kuvet Pyrex

- Beaker glass 500 ml Pyrex

- Botol akuades

- Erlenmeyer 250 ml dan 500 ml Pyrex

- Pipet volume 1 ml ; 5 ml ; 10 ml ; 20 ml ; 25 ml dan 50 ml Pyrex

- Neraca analitik Sartorius


(32)

3.1.2 Bahan

a. Bahan untuk Nitrat (NO3)

- Kristal Brusin pa. Merck

- Kristal Asam sulfanilat pa. Merck

- Kristal NaCl 30 % pa. Merck

- HCl (p) pa. Merck

- H2SO4 (p) pa. Merck

- Akuades

- Larutan standart Nitrat 1000 ppm Merck

b. Bahan untuk Nitrit (NO2)

- Kristal sulfanilamid pa. Merck

- Kristal dihidroklorida pa. Merck

- Akuades

- HCl (p) pa. Merck

- Air limbah karet

- Larutan standart Nitrit 1000 ppm Merck

3.2 Prosedur Penelitian

3.2.1 Penyediaan Larutan Pereaksi a. Larutan Sulfanilamid

- Ditimbang 5 gram kristal sulfanilamid

- Dilarutkan dalam campuran 300 ml akuades dan 50 ml HCl(p) - Diencerkan dengan akuades sampai 500 ml


(33)

b. Larutan N-1 Naptil Etilen Diamin Dihidroklorida (NEDD) - Ditimbang 0,5 g dihidroklorida

- Dilarutkan dalam 500 ml air destilasi

- Larutan ini harus disimpan dalam botol berwarna gelap. c. Campuran Brusin & Asam sulfanilat

- Ditimbang 1 gram Brusin sulfat

- Ditambahkan 0,1 gram Asam sulfanilat

- Ditambahkan 70 ml akuades panas didalam labu takar 100 ml - Ditambahkan 3 ml HCl (p)

- Dikocok - Didinginkan

- Ditambahkan akuades hingga batas tanda d. NaCl 30 %

- Ditimbang 30 gram Kristal NaCl - Dimasukkan kedalam beaker glass - Ditambahkan 100 ml akuades - Dilarutkan

- Dimasukkan kedalam botol kaca. 3.2.2 Penyediaan Larutan Standart

a. Larutan Standart Nitrat (NO3) 1. Larutan Standart NO3 100 ppm

Dipipet 10 ml larutan standart NO3 1000 ppm kemudian dipindahkan kedalam labu ukur 100 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.


(34)

2. Larutan Standart NO3 10 ppm

Dipipet 10 ml larutan standart NO3 100 ppm kemudian dipindahkan kedalam labu ukur 100 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

3. Larutan Standart NO3 1 ppm

Dipipet 10 ml larutan standart NO3 10 ppm kemudian dipindahkan kedalam labu takar 100 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

4. Larutan Standart NO3 2 ppm

Dipipet 20 ml larutan standart NO3 10 ppm kemudian dipindahkan kedalam labu takar 100 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

5. Larutan Standart NO3 3 ppm

Dipipet 30 ml larutan standart NO3 10 ppm kemudian dipindahkan kedalam labu takar 100 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

6. Larutan Standart NO3 4 ppm

Dipipet 40 ml larutan standart NO3 10 ppm kemudian dipindahkan kedalam labu takar 100 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

7. Larutan Standart NO3 5 ppm

Dipipet 50 ml larutan standart NO3 10 ppm kemudian dipindahkan kedalam labu takar 100 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.


(35)

b. Larutan Standart Nitrit (NO2) 1. Larutan Standart NO2 100 ppm

Dipipet 25 ml larutan standart NO2 1000 ppm kemudian dipindahkan kedalam labu ukur 250 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

2. Larutan Standart NO2 10 ppm

Dipipet 25 ml larutan standart NO2 100 ppm kemudian dipindahkan kedalam labu ukur 250 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

3. Larutan Standart NO2 1 ppm

Dipipet 25 ml larutan standart NO2 10 ppm kemudian dipindahkan kedalam labu takar 250 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

4. Larutan Standart NO2 0,1 ppm

Dipipet 25 ml larutan standart NO2 1 ppm kemudian dipindahkan kedalam labu takar 250 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

5. Larutan Standart NO2 0,08 ppm

Dipipet 20 ml larutan standart NO2 1 ppm kemudian dipindahkan kedalam labu takar 250 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.


(36)

6. Larutan Standart NO2 0,06 ppm

Dipipet 15 ml larutan standart NO2 1 ppm kemudian dipindahkan kedalam labu takar 250 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

7. Larutan Standart NO2 0,04 ppm

Dipipet 10 ml larutan standart NO2 1 ppm kemudian dipindahkan kedalam labu takar 250 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

8. Larutan Standart NO2 0,02 ppm

Dipipet 5 ml larutan standart NO2 1 ppm kemudian dipindahkan kedalam labu takar 250 ml, diencerkan dengan akuades sampai garis tanda lalu dihomogenkan.

3.2.3 Pembuatan Kurva Kalibrasi a. Larutan Standart Nitrat

- Dioptimalkan alat spektrofotometer sesuai dengan petunjuk penggunaan alat untuk pengujian kadar nitrat

- Dipipet 20 ml larutan standar nitrat 1 ; 2 ; 3; 4; 5 ppm, kemudian dimasukkan masing - masing kedalam Erlenmeyer 250 ml

- Ditambahkan 2 ml larutan NaCl dan 10 ml H2SO4 (p) diaduk perlahan-lahan dan biarkan sampai dingin

- Ditambahkan 1 ml larutan campuran Brusin-Asam sulfanilat, aduk perlahan-lahan dan panaskan diatas penangas air pada suhu tidak melebihi 95°C selama 20 menit kemudian didinginkan


(37)

-Dimasukkan blanko kedalam kuvet lalu diukur absorbansiya pada λ 410 nm lalu tekan autozero hingga absorbansinya 0,0000

-Dibilas kuvet kedua lalu masukkan sampel kemudian ukur absorbansinya pada λ 410 nm

- Dicatat angka absorbansinya. b. Larutan Standar Nitrit

-Dioptimalkan alat spektrofotometer sesuai dengan petunjuk penggunaan alat untuk pengujian kadar nitrit

-Dipipet 50 ml larutan standar nitrit 0,02; 0,04 ; 0,06 ; 0,08 0,1 ppm, kemudian dimasukkan kedalam Erlenmeyer 250 ml

-Ditambahkan 1 ml larutan sulfanilamid kedalam masing – masing Erlenmeyer biarkan bereaksi 2 -8 menit

-Ditambahkan 1 ml larutan NEDD (1-Naptil Etilen Diamina Dihidroklorida) dikocok, didiamkan selama 10 menit

-Dimasukkan blanko kedalam kuvet lalu diukur absorbansinya pada λ 543 nm lalu tekan auto zero hingga absorbansinya 0,0000

-Dibilas kuvet kedua lalu masukkan sampel kemudian ukur absorbansinya pada λ 543 nm

-Dicatat angka absorbansinya. 3.2.4 Perlakuan Pada Sampel

a. Penentuan Kadar Nitrat (NO3)

- Dipipet 20 ml sampel dan dimasukkan kedalam Erlenmeyer 250 ml -Ditambahkan 2 ml larutan NaCl dan 10 ml H2SO4 (p) diaduk perlahan-


(38)

-Ditambahkan 1 ml larutan campuran Brusin-Asam Sulfanilat, aduk perlahan – lahan dan panaskan diatas penangas air pada suhu tidak melebihi 95°C selama 20 menit kemudian didinginkan

-Dimasukkan kedalam kuvet dan diukur dengan alat spektrofotometer DR 2010

- Dicatat angka absorbansinya. b. Penentuan Kadar Nitrit (NO2)

-Dipipet 50 ml sampel, dimasukkan kedalam Erlenmeyer 250 ml

-Ditambahkan 1 ml larutan sulfanilamid kedalam masing – masing Erlenmeyer, lalu biarkan bereaksi 2 -8 menit

-Ditambahkan 1 ml larutan NEDD (1-Naptil Etilen Diamina Dihidroklorida) dikocok, didiamkan selama 10 menit

-Dimasukkan kedalam kuvet dan diukur dengan alat spektrofotometer DR 2010


(39)

BAB 4

DATA DAN PEMBAHASAN

4.1. Hasil

Hasil analisis yang dilakukan di Balai Riset Standardisasi Industri Medan untuk kadar nitrat dan nitrit dengan metode spektrofotometer UV-Visible ditunjukkan pada :

Tabel 1 Data Penentuan Kadar Nitrat Pada Sampel

No Perlakuan Minggu I

(mg/l)

Minggu II (mg/l)

Minggu III (mg/l)

1 1 1,3 7,3 35,6

2 2 1,4 7,4 35,7

3 3 1,2 7,4 35,5

Rata – rata 1,6 7,3 35,6

Tabel 2 Data Penentuan Kadar Nitrit Pada Sampel

No Perlakuan Minggu I

(mg/l)

Minggu II (mg/l)

Minggu III (mg/l)

1 1 0,052 0,063 0,109

2 2 0.053 0,063 0,110

3 3 0,054 0,062 0,109

Rata – rata 0,053 0,062 0,109


(40)

Tabel 4 Data Absorbansi Larutan Standart Nitrit (NO2) Berdasarkan Hasil Percobaan Konsentrasi ( mg/l) Absorbansi

0 0

0,02 0,045

0,04 0,099

0,06 0,149

0,08 0,190

0,1 0,250

Konsentrasi (mg/l) Absorbansi

0 0

1 0,029

2 0,055

3 0,141

4 0,190


(41)

4.2 Penentuan Nitrat

Dari Tabel 3 pada hasil pengukuran absorbansi dari suatu larutan seri standart nitrat diplotkan terhadap konsentrasi larutan standar sehingga diperoleh kurva kalibrasi berupa garis linier. Persamaan garis regresi untuk kurva kalibrasi ini dapat diturunkan dengan menggunakan metode Least Square dimana konsentrasi dinyatakan sebagai Xi dan absorbansi sebagai Yi, seperti pada tabel berikut :

NO Xi (ppm) Yi (A) (Xi - ) (Yi – ) (Xi – )2 (Yi - )2 (Xi – )(Yi - )

1 0,0000 0,0000 -2,5000 -0,1078 6,25 0,0116 0,2695

2 1,0000 0,0290 -1,5000 -0,0788 2,25 0,0062 0,1182

3 2,0000 0,0550 -0,5000 -0,0528 0,25 0,0027 0,0264

4 3,0000 0,1410 0,5000 0,0332 0,25 0,0011 0,0161

5 4,0000 0,1900 1,5000 0,0822 2,25 0,0067 0,1233

6 5,0000 0,2320 2,5000 0,1242 6,25 0,0154 0,3105

∑ 15,000 0,6470 0 0,0002 17,5 0,00437 0,864

Dari table diatas diperoleh = = 2,5

Dan harga = = 0,1078

4.2.1 Penurunan persamaan garis regresi untuk larutan standart nitrat Persamaan garis regresi untuk kurva kalibrasi dinyatakan dengan y = ax + b, dimana :

a = slope b = intersept


(42)

Harga slope (a) dapat diperoleh dari persamaan sebagai berikut : a = ) (Yi - )

∑ (Xi - )2

a

=

= 0,0493

Sedangkan harga intersept (b) dapat diperoleh melalui persamaan : = a + b

Atau b = a

= 0,1078 – ( 0,0493 )(2,5) = - 0,0152

Dengan demikian persamaan garis regresi untuk kurva kalibrasi nitrat adalah Y = aX + b

Y = 0,0493 X + (- 0,0152)

Dengan mensubstitusikan harga Xi (konsentrasi standart) ke persamaan garis regresi didapat harga Y yang baru :

Untuk Xi = 1,0 Y = 0,0341


(43)

Xi = 3,0 Y = 0,1327

Xi = 4,0 Y = 0,182

Xi = 5,0 Y = 0,2313

Koefisien Korelasi

Koefisien korelasi dapat dihitung dengan menggunakan persamaan : r = ) (Yi - )

[∑ (Xi - )2∑(Yi - )2]1/2

r =

r =

r = 0,9885 4.3 Penentuan Nitrit

Dari Tabel 4 pada hasil pengukuran absorbansi dari suatu larutan seri standart nitrit diplotkan terhadap konsentrasi larutan standart sehingga diperoleh kurva kalibrasi berupa garis linier. Persamaan garis regresi untuk kurva kalibrasi ini dapat diturunkan dengan menggunakan metode Least Square dimana konsentrasi dinyatakan sebagai Xi dan absorbansi sebagai Yi, seperti pada tabel berikut :


(44)

NO Xi (µg/l) Yi (A) (Xi - ) (Yi – ) (Xi – )2 (Yi - )2 (Xi – )(Yi - )

1 0,0000 0,0000 -50 -0,1221 2500 0,0149 6,105

2 20,000 0,045 -30 -0,0771 900 0,0059 2,313

3 40,000 0,099 -10 -0,0231 100 0,0005 0,231

4 60,000 0,149 10 0,0269 100 0,0007 0,269

5 80,000 0,190 30 0,0679 900 0,0046 2,037

6 100,000 0,250 50 0,1279 2500 0,0163 6,395

∑ 300,000 0,733 0 0,0004 7000 0,0429 17,35

Dari table di atas diperoleh = 50

dan harga = 0,1221

4.3.1. Penurunan persamaan garis regresi untuk larutan standart nitrit Persamaan garis regresi untuk kurva kalibrasi dinyatakan dengan y = ax + b

dimana : a = slope b = intersept

harga slope ( a ) dapat diperoleh dari persamaaan berikut : a = ) (Yi - )

∑ (Xi - )2


(45)

Sedangkan harga intersept (b) dapat diperoleh melalui persamaan : Y = a + b

Atau b = a

= 0,1221 – (0,00247)(50) = - 0,0014

Dengan demikian persamaan garis regresi untuk kurva kalibrasi nitrit adalah : Y = aX + b

Y = 0,00247 X + (- 0,0014)

Dengan mensubstitusikan harga Xi (konsentrasi standart) ke persamaan garis regresi didapat harga Y yang baru :

Untuk Xi = 20,000 Y = 0,048 Xi = 40,000 Y = 0,0974 Xi = 60,000 Y = 0,1468 Xi = 80,000 Y = 0,1962 Xi = 100,00 Y = 0,2456

Koefisien Korelasi


(46)

Koefisien korelasi dapat dihitung dengan menggunakan persamaan : r = ) (Yi - )

[∑ (Xi - )2∑(Yi - )2]1/2

r =

r

=

r = 1,001 4.4 Pembahasan

Dari hasil Tabel 1 dan 2, dapat dilihat bahwa pada minggu pertama kadar nitrat adalah 1,6 mg/L, pada minggu kedua adalah 7,3 mg/L dan pada minggu ketiga adalah 35,6 mg/L. Sedangkan kadar nitrit pada minggu pertama adalah 0,053 mg/L, pada minggu kedua adalah 0,062 mg/L dan pada minggu ketiga adalah 0,109 mg/L. Berdasarkan data di atas dapat dinyatakan bahwa kadar nitrat dan nitrit pada minggu ketiga melewati baku yang ditetapkan oleh Keputusan Menteri Lingkungan Hidup No 51 Tahun 1995 Tentang Baku Mutu Limbah Cair Bagi Kegiatan Industri, yakni sebesar 20 mg/L untuk Nitrat (NO3) dan 1 mg/L untuk Nitrit (NO2). Pada minggu pertama dan minggu kedua, kadar nitrat dan nitrit dari limbah cair industri karet tidak menunjukkan hasil yang signifikan, dikarenakan pabrik belum beroperasi secara maksimal sedangkan pada minggu ketiga kadar nitrat dan nitrit dari limbah cair industri karet tersebut melewati baku mutu, dikarenakan pabrik karet mulai beroperasi secara maksimal. Sehingga menimbulkan peningkatan kadar Amonia yang akan


(47)

dioksidasi oleh bakteri menjadi nitrat dan nitrit. Kemungkinan lain juga dikarenakan pada minggu ketiga penggunaan nitrit dilakukan secara besar – besaran untuk mencegah korosi dalam air ketel.


(48)

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian dapat disimpulkan bahwa kadar Nitrat (NO3) selama tiga minggu berturut – turut adalah 1,6 mg/L ; 7,3 mg/L dan 35,6 mg/L dan untuk kadar Nitrit (NO2) selama tiga minggu berturut – turut adalah 0,053 mg/L ; 0,062 mg/L dan 0,109 mg/L. Pada minggu ke I dan minggu ke II didapati hasil sesuai dengan Keputusan Menteri Lingkungan Hidup No 51 Tahun 1995 dan minggu ke III didapati melewati baku mutu.

5.2 Saran

- Sebaiknya untuk penelitian selanjutnya agar menggunakan metode yang lain untuk menentukan kadar nitrat dan nitrit dalam limbah pabrik karet.

- Dalam pengolahan air sungai sebaiknya dilakukan pemeriksaan setiap minggunya dan harus lebih diperhatikan, pada waktu pabrik beroperasi.


(49)

DAFTAR PUSTAKA

Agusnar, H. 2008. Analisa Pencemaran dan Pengendalian Lingkungan. Terbitan Pertama. Medan: USU Press.

Alexander,T. 2004. Pengantar Limnologi. Medan : USU Press.

Chandra,B. 2007. Pengantar Kesehatan Lingkungan. Jakarta : Penerbit Buku Kedokteran EGC. Cetakan Pertama.

Effendi,H.2002. Telaah Kualitas Air.Yogyakarta : Kanisius.

Khopkar, S.M. 2003. Konsep Dasar Kimia Analitik. Jakarta : UI-Press. Kristanto,P. 2004. Ekologi Industri. Edisi ke-3. Yogyakarta : Penerbit Andi.


(50)

(51)

Lampiran 1

NOMOR : KEP-51/ MENLH/ 10/ 1995 TENTANG : BAKU MUTU LIMBAH CAIR BAGI KEGIATAN INDUSTRI TANGGAL : 23 OKTOBER 1995

BAKU MUTU LIMBAH CAIR

NO PARAMETER SATUAN GOLONGAN BAKU

MUTU LIMBAH CAIR

1. Temperatur derajat C 38 40

2. Zat padat larut mg/L 2000 4000

3 Zat padat tersuspensi mg/L 200 400

KIMIA

1 Ph mg/L 6,0 sampai 9,0

2 Besi terlarut ( Fe) mg/L 5 10

3 Mangan terlarut (Mn) mg/L 2 5

4 Barium (Ba) mg/L 2 3

5 Tembaga ( Cu) mg/L 2 3

6 Seng ( Zn) mg/L 5 10

7 Krom Heksavale (Cr+6) mg/L 01 0,5

8 Krom Total (Cr) mg/L 0,5 1

9 Cadmium (Cd) mg/L 0,05 0.1

10 Raksa (Hg) mg/L 0,002 0,005

11 Timbal (Pb) mg/L 0,1 1

12 Stanum mg/L 2 3

13 Arsen mg/L 0,1 0,5

14 Selenium mg/L 0,05 0,5

15 Nikel (Ni) mg/L 0,2 0,5

16 Kobalt (Co) mg/L 0,4 0,6

17 Sianida (CN) mg/L 0,05 0,5

18 Sulfida (H2S) mg/L 0,05 0,1

19 Fluorida (F) mg/L 2 3

20 Klorin Beba (Cl2) mg/L 1 2

21 Amonia bebas (NH3-N) mg/L 1 5

22 Nitrat (NO3-N) mg/L 20 30

23 Nitrit (NO2-N) mg/L 1 3

24 BOD5 mg/L 50 150

25 COD mg/L 100 300

26 Senyawa aktif biru metilen mg/L 5 10

27 Fenol mg/L 0,5 1

28 Minyak Nabati mg/L 5 10

29 Minyak Mineral mg/L 10 50


(52)

Lampiran 2 : Grafik Kurva Kalibrasi Larutan Standart Nitrat

0,0341

0,0834

0,1327

0,182

0,2313

0 0,05 0,1 0,15 0,2 0,25

1 2 3 4 5

A

B

S

O

R

B

A

N

S

I

KONSENTRASI


(53)

Lampiran 3 : Grafik Kurva Kalibrasi Larutan Standart Nitrit

0,048

0,0974

0,1468

0,1962

0,2456

0 0,05 0,1 0,15 0,2 0,25 0,3

1 2 3 4 5

A

B

S

O

R

B

A

N

S

I

KONSENTRASI


(1)

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian dapat disimpulkan bahwa kadar Nitrat (NO3) selama tiga minggu berturut – turut adalah 1,6 mg/L ; 7,3 mg/L dan 35,6 mg/L dan untuk kadar Nitrit (NO2) selama tiga minggu berturut – turut adalah 0,053 mg/L ; 0,062 mg/L dan 0,109 mg/L. Pada minggu ke I dan minggu ke II didapati hasil sesuai dengan Keputusan Menteri Lingkungan Hidup No 51 Tahun 1995 dan minggu ke III didapati melewati baku mutu.

5.2 Saran

- Sebaiknya untuk penelitian selanjutnya agar menggunakan metode yang lain untuk menentukan kadar nitrat dan nitrit dalam limbah pabrik karet.

- Dalam pengolahan air sungai sebaiknya dilakukan pemeriksaan setiap minggunya dan harus lebih diperhatikan, pada waktu pabrik beroperasi.


(2)

DAFTAR PUSTAKA

Agusnar, H. 2008. Analisa Pencemaran dan Pengendalian Lingkungan. Terbitan Pertama. Medan: USU Press.

Alexander,T. 2004. Pengantar Limnologi. Medan : USU Press.

Chandra,B. 2007. Pengantar Kesehatan Lingkungan. Jakarta : Penerbit Buku Kedokteran EGC. Cetakan Pertama.

Effendi,H.2002. Telaah Kualitas Air.Yogyakarta : Kanisius.

Khopkar, S.M. 2003. Konsep Dasar Kimia Analitik. Jakarta : UI-Press. Kristanto,P. 2004. Ekologi Industri. Edisi ke-3. Yogyakarta : Penerbit Andi.


(3)

(4)

Lampiran 1

NOMOR : KEP-51/ MENLH/ 10/ 1995 TENTANG : BAKU MUTU LIMBAH CAIR BAGI KEGIATAN INDUSTRI TANGGAL : 23 OKTOBER 1995

BAKU MUTU LIMBAH CAIR

NO PARAMETER SATUAN GOLONGAN BAKU

MUTU LIMBAH CAIR

1. Temperatur derajat C 38 40

2. Zat padat larut mg/L 2000 4000

3 Zat padat tersuspensi mg/L 200 400

KIMIA

1 Ph mg/L 6,0 sampai 9,0

2 Besi terlarut ( Fe) mg/L 5 10

3 Mangan terlarut (Mn) mg/L 2 5

4 Barium (Ba) mg/L 2 3

5 Tembaga ( Cu) mg/L 2 3

6 Seng ( Zn) mg/L 5 10

7 Krom Heksavale (Cr+6) mg/L 01 0,5

8 Krom Total (Cr) mg/L 0,5 1

9 Cadmium (Cd) mg/L 0,05 0.1

10 Raksa (Hg) mg/L 0,002 0,005

11 Timbal (Pb) mg/L 0,1 1

12 Stanum mg/L 2 3

13 Arsen mg/L 0,1 0,5

14 Selenium mg/L 0,05 0,5

15 Nikel (Ni) mg/L 0,2 0,5

16 Kobalt (Co) mg/L 0,4 0,6

17 Sianida (CN) mg/L 0,05 0,5

18 Sulfida (H2S) mg/L 0,05 0,1

19 Fluorida (F) mg/L 2 3

20 Klorin Beba (Cl2) mg/L 1 2

21 Amonia bebas (NH3-N) mg/L 1 5

22 Nitrat (NO3-N) mg/L 20 30

23 Nitrit (NO2-N) mg/L 1 3

24 BOD5 mg/L 50 150

25 COD mg/L 100 300

26 Senyawa aktif biru metilen mg/L 5 10

27 Fenol mg/L 0,5 1

28 Minyak Nabati mg/L 5 10

29 Minyak Mineral mg/L 10 50


(5)

Lampiran 2 : Grafik Kurva Kalibrasi Larutan Standart Nitrat

0,0341

0,0834

0,1327

0,182

0,2313

0 0,05 0,1 0,15 0,2 0,25

1 2 3 4 5

A

B

S

O

R

B

A

N

S

I

KONSENTRASI


(6)

Lampiran 3 : Grafik Kurva Kalibrasi Larutan Standart Nitrit

0,048

0,0974

0,1468

0,1962

0,2456

0 0,05 0,1 0,15 0,2 0,25 0,3

1 2 3 4 5

A

B

S

O

R

B

A

N

S

I

KONSENTRASI


Dokumen yang terkait

Analisa Kadar Nitrat (NO3) Nitrit (NO2) dari Campuran Limbah laboratorium dan Domestik dengan Menggunakan Spektrofotometer DR 2000/2010 pada Balai Riset Standardisasi Industri Medan

21 307 50

Penentuan Kadar Ammonia Limbah Cair Laboratorium Balai Riset Dan Standardisasi Industri Secara Spektrofotometri

1 47 42

Analisa Kadar Nitrat (NO3 -) Dan Nitrit (NO2 -) Untuk Pengujian Air Limbah Industri Dengan Metode Spektrofotometri varian/secomam pada Btklpp Kelas 1 Medan

0 3 47

Analisa Kadar Nitrat (NO3 -) Dan Nitrit (NO2 -) Untuk Pengujian Air Limbah Industri Dengan Metode Spektrofotometri varian secomam pada Btklpp Kelas 1 Medan

0 0 10

Analisa Kadar Nitrat (NO3 -) Dan Nitrit (NO2 -) Untuk Pengujian Air Limbah Industri Dengan Metode Spektrofotometri varian secomam pada Btklpp Kelas 1 Medan

0 0 2

Analisa Kadar Nitrat (NO3 -) Dan Nitrit (NO2 -) Untuk Pengujian Air Limbah Industri Dengan Metode Spektrofotometri varian secomam pada Btklpp Kelas 1 Medan

0 0 3

Analisa Kadar Nitrat (NO3 -) Dan Nitrit (NO2 -) Untuk Pengujian Air Limbah Industri Dengan Metode Spektrofotometri varian secomam pada Btklpp Kelas 1 Medan

0 0 17

Analisa Kadar Nitrat (NO3 -) Dan Nitrit (NO2 -) Untuk Pengujian Air Limbah Industri Dengan Metode Spektrofotometri varian secomam pada Btklpp Kelas 1 Medan

0 0 1

Analisa Kadar Nitrat (NO3 -) Dan Nitrit (NO2 -) Untuk Pengujian Air Limbah Industri Dengan Metode Spektrofotometri varian secomam pada Btklpp Kelas 1 Medan

0 0 5

BAB 2 TINJAUAN PUSTAKA 2.1 Air - Analisa Kadar Nitrat (NO3) Nitrit (NO2) dari Campuran Limbah laboratorium dan Domestik dengan Menggunakan Spektrofotometer DR 2000/2010 pada Balai Riset Standardisasi Industri Medan

0 0 13