Molecular Diffusion Interphase mass transfer one-film theory for two immiscible phases

Ria Millati Jurusan Teknologi Pangan dan Hasil Pertanian Fakultas Teknologi Pertanian Three principles of mechanism: 1. Molecular diffusion 2. Interphase mass transfer one-film theory 3. Interphase mass transfer two-film theory

1. Molecular Diffusion

Consider the following figure: When the partition is removed, gas A is diffused into gas B. General formula:   dz dx D C x N N N A AB A B A A . .    where:   time area in B ient of A on coeffic or diffusi y diffusivit the D B A mol mol A on mol fracti X volume mol ion concentrat total C time. area mol A N AB A A B A                         Three special cases: 1. Diffusion through stagnant medium N B = 0   dz dx D C x N N N A AB A B A A . .      dz dx x D C N A A AB A . 1 .    Example: water evaporating into air, volatile oil evaporating into air 2. Equimolar counter diffusion N A = -N B Illustration: A NB NA B   dz dx D C x N N N A AB A B A A . .    dz dx D C N A AB A . .   Example: diffusion of vapor and liquid in the distillation column 3. Diffusion within dilute solution x A  0, thus C is constant   dz dx D C x N N N A AB A B A A . .    dz dx D C N A AB A . .     dz x C d D N A AB A . . .     Ficks law dz C d D N A AB A ....... . .   Note: Diffusion can occur in gases, liquids, and there is also diffusion in solids. For diffusion in solids, the the equiation follow Fick’s law.

2. Interphase mass transfer one-film theory for two immiscible phases

SystemPhase: Solid-liquid crystallization Solid-gas sublimation, adsorption Illustration: As an approximation of the mass transfer rate of A, the following equation can be applied:         A S A g A AS y A AS x A AS c A P P k y y k x x k C C k N         t A A P y P .  where: area.time mol A sfer of A mass tran N A  ion of A concentrat saturated C AS  B gas in or liquid in n fluid ion of A i concentrat C A  Solid A capable of being dissolved C AS • C A Fluid B liquid or gas N A film ce s film resi oefficient transfer c mass k k k k g y x c tan , , ,   Contoh aplikasi: Suatu padatan A misal: kapur barus atau es kering berbentuk bola jari-jari R = 0,8 cm berada di udara yang ventilasinya cukup baik. Rapat massa A 3 1,1g cm   . Suhu system T = 300 K. tekanan uap murni zat A pada 300 K adalah 4 1,14.10 AS P atm   . Koefisien transfer massa A dari permukaan ke udara 2000 cm kc jam  . Ingin diperkirakan waktu yang diperlukan sampai zat A tersebut habis menyublim. Diketahui berat molekul A, 128 g M mol  . Analisis : Neraca massa A padatan :   2 3 ............................ 4 1 .4 . . . 3 AS A rate of rate of rate of massa A input output accumulation waktu d kc r C C r dt M    � � � � � �   � � � � � � ��� � �    � � � � Dimana r = berubah sehingga :   2 3 4 1 .4 . . . 3 AS A d kc r C C r M dt       Dimana : 3 3 2 . 3 d d dr r r dt dr dt dr r dt   Sehingga :     2 2 4 .4 . . 3 3 . AS A AS A dr kc r C C r M dt dr kc M C C dt           Karena ventilasi baik maka A C ≈ 0 Zat A padat r . AS dr kc M C dt    AS AS P C RT  . AS P dr kc M dt RT    . . . . t ts r AS t r R ts R AS RT dt dr kc M P RT t dr kc M P           � � . . . . . AS AS RT ts R kc M P RTR kc M P       3 3 4 . 1,1 0,082 300 0,8 1 . 1000 24 2000 128 1,14.10 30,907 31 g L atm x x K x cm cm hari mol K cm ts x x g L jam cm x x atm jam mol hari    �

3. Interphase mass transfer two-film theory for two immiscible phases