paper 08-18-2009. 103KB Jun 04 2011 12:03:06 AM

ACTA UNIVERSITATIS APULENSIS

No 18/2009

DIFFERENTIAL SUBORDINATIONS OBTAINED USING
DZIOK-SRIVASTAVA LINEAR OPERATOR

˘ut
Adela Olimpia Ta
Abstract. By using the properties of Dziok-Srivastava linear operator
we obtain differential subordinations using functions from class A.
1. Introduction and preliminaries
Let U denote the unit disc of the complex plane:
U = {z ∈ C : |z| < 1}
and
U = {z ∈ C : |z| ≤ 1}.
Let H(U ) denote the space of holomorphic functions in U and let
An = {f ∈ H(U ), f (z) = z + an+1 z n+1 + . . . , z ∈ U }
with A1 = A.
Let
H[a, n] = {f ∈ H(U ), f (z) = z + an z n + an+1 z n+1 + . . . , z ∈ U },

S = {f ∈ A; f is univalent in U }.
Let
K=



zf ′′ (z)
+ 1 > 0, z ∈ U
f ∈ A, Re ′
f (z)



denote the class of convex functions in U and


zf ′ (z)

S = f ∈ A; Re
> 0, z ∈ U

f (z)
79

,

A. O. T˘aut - Differential subordinations obtained using Dziok-Srivastava...
denote the class of starlike functions in U .
If f and g are analytic functions in U , then we say that f is subordinate
to g, written f ≺ g, if there is a function w analytic in U , with w(0) = 0,
|w(z)| < 1, for all z ∈ U such that f (z) = g[w(z)] for z ∈ U .
If g is univalent, then f ≺ g if and only if f (0) = g(0) and f (U ) ⊆ g(U ).
The method of differential subordinations (also known as the admissible
functions method) was introduced by P.T. Mocanu and S.S. Miller in 1978 [1]
and 1981 [2] it was developed in [3].
Definition 1. Let ψ : C3 × U → C and let h be univalent in U . If p is
analytic in U and satisfies the (second-order) differential subordination
(i) ψ(p(z), zp′ (z), z 2 p′′ (z); z) ≺ h(z), z ∈ U
then p is called a solution of differential subordination. The univalent function
q is called a dominant of the solution of the differential subordination, or more
simply a dominant, if p ≺ q for all p satisfying (ii). A dominant qe that satisfies

qe ≺ q for all dominant q of (ii) is said to be the best dominant of (i). (Note
that the best dominant is unique up to a rotation of U ).
In [4] the authors introduce the dual problem of the differential subordination which they call differential superordination.
Definition 2. [4]Let f, F ∈ H(U ) and let F be univalent in U . The
function F is said to be superordinare to f , or f is subordinate to F , written
f ≺ F , if f (0) = F (0) and f (U ) ⊂ F (U ).
Definition 3. [4]Let ϕ : C3 × U → C and let h be analytic in U . If p
and ϕ(p(z), zp′ (z), z 2 p′′ (z); z) are univalent in U and satisfy the (second-order)
differential superordination
(ii) h(z) ≺ ϕ(p(z), zp′ (z), z 2 p′′ (z); z)
then p is called a solution of the differential superordination. An analytic function q is called a subordinant of the solution of the differential superordination,
or more simply a subordinant if q ≺ p for all p satisfying (i). A univalent
subordinant qe that satisfies q ≺ qe for all subordinants q of (ii) is said to be the
best subordinant. (Note that the best subordinant is unique up to a rotation
of U ).
Definition 4. [3, Definition 2.2b, p. 21] We denote by Q the set of
functions f that are analytic and injective on U \ E(f ), where


E(f ) = ζ ∈ ∂U ; lim f (z) = ∞

z→ζ

and are such that f ′ (ζ) 6= 0 for ζ ∈ ∂U \ E(f ).
80

A. O. T˘aut - Differential subordinations obtained using Dziok-Srivastava...
The subclass of Q for which f (0) = a is denoted by Q(a).
In order to prove the new results we shall use the following lemmas:
Lemma A. (Hallenbeck and Ruschweyh) [4, Th. 3.1.6, p. 71] Let h be
convex function, with h(0) = α and let γ ∈ C∗ be a complex number with
Re γ ≥ 0. If p ∈ H[a, n] and
1
p(z) + zp′ (z) ≺ h(z),
γ

z∈U

then
p(z) ≺ q(z) ≺ h(z),


z∈U

where

Z z
γ
γ
h(t)t n −1 dt, z ∈ U.
q(z) = γ/n
nz
0
The function q is convex in U and is the best dominant.
For two functions
f (z) = z +


X

ak z k


and g(z) = z +

k=2


X

bk z k ,

k=2

the Hadamard product (or convolution) of f and g is defined by
(f ∗ g)(z) := z +


X

ak b k z k .

k=2


For αi ∈ C, i = 1, 2, 3, . . . , l and βj ∈ C \ {0, −1, −2, . . . }, j = 1, 2, . . . , m,
the generalized hypergeometric function is defined by

X
(α1 )n . . . (αl )n z n
·
l Fm (α1 , α2 , . . . , αl ; β1 , β2 , . . . , βm ; z) =
(β1 )n . . . (βm )n n!
n=0

(l ≤ m + 1, m ∈ N0 = {0, 1, 2, . . . })
where (a)n is the Pochhammer symbol defined by

Γ(a + n)
1,
n=0
(a)n :
=
a(a + 1) . . . (a + n − 1), n ∈ N := {1, 2, . . . }

Γ(a)
Corresponding to the function
h(α1 , α2 , . . . , αl ; β1 , β2 , . . . , βm ; z) = z · l Fm (α1 , . . . , αl ; β1 , . . . , βm ; z)
81

A. O. T˘aut - Differential subordinations obtained using Dziok-Srivastava...
Dziok-Srivastava operator [5], [6], [7] is
l
Hm
(α1 , α2 , . . . , αl ; β1 , β2 , . . . , βm ; z)

= h(α1 , α2 , . . . , αl ; β1 , β2 , . . . , βm ; z) ∗ f (z)

X
zn
(α1 )n−1 (α2 )n−1 . . . (αl )n−1
=z+
· an ·
(β1 )n−1 (β2 )n−1 . . . (βl )n−1
(n − 1)!

n=2
For simplicity, we write
l
l
Hm
[α1 ]f (z) = Hm
(α1 , α2 , . . . , αl ; β1 , β2 , . . . , βm ; z).

It is well known [2] that
l
l
l
α1 Hm
[α1 + 1]f (z) = z{Hm
[α1 ]f (z)}′ + (α1 − 1)Hm
[α1 ]f (z).

(1)

2. Main results

Theorem 1. Let l, m ∈ N, l ≤ m + 1, αi ∈ C, i = 1, 2, . . . , l and
βj ∈ C \ {0, −1, −2, . . . }, j = 1, 2, 3, . . . , m, f ∈ A, and Dziok-Srivastava
l
linear operator Hm
[α1 ]f (z) is given by (1).
If it verifies the differential subordination
l
{Hm
[α1 + 1]f (z)}′ ≺ h(z),

(2)

z ∈ U, Re α1 > 0

where h is a convex function, then
l
[Hm
[α1 ]f (z)]′ ≺ q(z),

where


Z
α1 z
h(t)tα1 −1 dt
q(z) = α1
z
0
q is a convex function and it is the best dominant.
Proof. Differentiating (1), we obtain:
l
l
α1 {Hm
[α1 + 1]f (z)}′ = α1 {Hm
[α1 ]f (z)}′

(3)

l
+Z{Hm
[α1 ]f (z)}′′ ,

z ∈ U.

we note that
(4)

l
p(z) = {Hm
[α1 ]f (z)}′ = 1 + p1 z + p2 z 2 + . . . ,

82

A. O. T˘aut - Differential subordinations obtained using Dziok-Srivastava...
pi ∈ C, where p ∈ H[1, 1].
Using (4) and (3) , the subordination (2) becomes:
(5)

p(z) +

1 ′
zp (z) ≺ h(z),
α1

z ∈ U, Re α1 > 0.

Using Lemma A, we have
α1
p(z) ≺ q(z) = α1
z

Z

α1
≺ q(z) = α1
z

Z

i.e.
l
{Hm
[α1 ]f (z)}′

z

h(t)tα1 −1 dt

0
z

h(t)tα1 −1 dt,

z ∈ U,

0

q is a convex function and it is the best dominant.
Remark 1. If the function
h(z) =

1 + (2α − 1)z
,
1+z

z ∈ U, 0 ≤ α < 1,

then Theorem 1 can be expressed in the following :
Corollary 1. Let l, m ∈ N, l ≤ m + 1, αi ∈ C, i = 1, 2, . . . , l and
l
βj ∈ C \ {0, −1, −2, . . . }, j = 1, 2, 3, . . . , m let f ∈ A and let Hm
[α1 ]f (z) be
Dziok-Srivastava linear operator given by (1).
If
l
{Hm
[α1 + 1]f (z)}′ ≺ h(z) =

1 + (2α − 1)z
,
1+z

then
l
{Hm
[α1 ]f (z)}′ ≺ q(z) = α1 (2α − 1) +

z ∈ U, 0 ≤ α < 1

2α1 (1 − α)
σ(z, α1 )
z α1

where
(6)

σ(z, α1 ) =

Z

0

z

tα1 −1
dt.
1+t

Since
q(z) = α1 (2α − 1) + 2α1 (1 − α)

83

σ(z, α1 )
z α1

A. O. T˘aut - Differential subordinations obtained using Dziok-Srivastava...
then, from the convexity of q, and since the fact that q(U ) is symmetric with
respect to the real axis and from p(z) ≺ q(z), we deduce
Re p(z) > Re q(1) = (2α − 1)Re α1 + 2(1 − α)Re α1 · σ(1, α1 ) > 0
we obtain
l
Re {Hm
[α1 ]f (z)}′ > 0

i.e.
l
Hm
[α1 ]f (z) ∈ S.

Remark 2. If m = 0, l = 1, α1 = 1, f ∈ A we obtain:
H01 [1]f (z) = f (z),

H01 [2]f (z) = zf ′ (z).

In this case Theorem 1 can be expressed under the form of the following
corollary:
Corollary 2. If the differential subordination
zf ′′ (z) + f ′ (z) ≺ h(z),

z∈U

holds, then

Z
1 z
f (z) ≺
h(t)dt, z ∈ U.
z 0
Theorem 2. Let l, m ∈ N, l ≤ m + 1, αi ∈ C, i = 1, 2, . . . , l, βj ∈
l
C \ {0, −1, −2, . . . }, j = 1, 2, . . . , m let f ∈ A and let Hm
[α1 ]f (z) be DziokSrivastava linear operator given by (1).
If the differential subordination


l
{Hm
[α1 ]f (z)}′ ≺ h(z),

(7)
holds, then

z ∈ U, Re α1 > 0

l
Hm
1
[α1 ]f (z)
≺ q(z) =
z
z

Z

z

h(t)dt.

0

Proof. Let
(8)

p(z) =

l
Hm
[α1 ]f (z)
= 1 + p1 z + p2 z 2 + . . . ,
z

z ∈ U, p ∈ H[1, 1].

Differentiating (8), we obtain
(9)

l
p(z) + zp′ (z) = {Hm
[α1 ]f (z)}′

84

A. O. T˘aut - Differential subordinations obtained using Dziok-Srivastava...
Using (9), the differential subordination (7) becomes:
p(z) + zp′ (z) ≺ h(z),

z ∈ U.

Using Lemma A, we obtain
1
p(z) ≺ q(z) =
z

Z

z

h(t)dt.

0

The function q is convex and it is the best dominant.
Remark 3. If m = 0, l = 1, α1 = 2, f ∈ A, h(z) =
Theorem 2 becomes the following corollary:
Corollary 3. If the differential subordination:
zf ′ (z) + f (z) ≺

1+z
,
1−z

1+z
then the
1−z

z∈U

holds , then
1
f (z) ≺ q(z) =
z

Z

0

z

2 ln(1 − z)
1+t
dt = −1 +
.
1−t
z

Then function q is convex and it is the best dominant.
References
[1] S.S.Miller, Petru T. Mocanu, Second order differential inequalities in
the complex plane, J. Math. Anal. Appl. 65(1978), 298305.
[2] S.S.Miller, Petru T. Mocanu, Differential subordinations and univalent
functions, Michigan Math. J., 28(1981), 157171.
[3] S.S.Miller, Petru T. Mocanu, Differential subordinations. Theory and
applications, Pure and Applied Mathematics, Marcel Dekker, Inc., New York,
2000.
[4] S.S.Miller, Petru T. Mocanu, Subordination of differential superordinations, Complex Variables., 48, 10(2003), 815-826.
[5] J. Dziok, H.M. Stivastava, Clases of analytic functions associated with
the generalized hypergeometric function, Appl. Math. Comput., 103(1999),
1-13.
85

A. O. T˘aut - Differential subordinations obtained using Dziok-Srivastava...
[6] J. Dziok, H.M. Stivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec.
Funct., 14(2003), 7-18.
[7] S. Owa, On the distortion theorems, I. Kyungpook. Math. J., 18(1978),
53-59.
Author:
Adela Olimpia T˘aut
Faculty of Environmental Protection
University of Oradea, Romania
email: adela [email protected]

86

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52