paper 06-17-2009. 116KB Jun 04 2011 12:03:06 AM

ACTA UNIVERSITATIS APULENSIS

No 17/2009

LINEAR OPERATORS ASSOCIATED WITH A SUBCLASS OF
HYPERGEOMETRIC MEROMORPHIC UNIFORMLY
CONVEX FUNCTIONS
Firas Ghanim and Maslina Darus
Abstract. Making use of certain linear operator, we define a new subclass
of meromorphically uniformly convex functions with positive coefficients and
obtain coefficient estimates, growth and distortion theorem, extreme points,
closure theorems and radii of starlikeness and convexity for the new subclass.
2000 Mathematics Subject Classification: 30C45, 33C05.
Key words: Hypergeometric functions, Meromorphic functions, Uniformly
starlike functions,Uniformly convex functions, Hadamard product.
1. Introduction
Let Σ denote the class of meromorphic functions f normalized by
f (z) =


1 X

+
an z n ,
z n=1

(1)

which are analytic and univalent in the punctured unit disk U = {z : 0 < |z| < 1}.
For 0 ≤ β, we denote by S ∗ (β) and k(β), the subclasses of Σ consisting of all
meromorphic functions which are, respectively, starlike of order β and convex
of order β in U (cf. e.g., [1, 2, 4, 12]).
For functions fj (z)(j = 1; 2) defined by
fj (z) =


1 X
an,j z n ,
+
z n=1

(2)


we denote the Hadamard product (or convolution) of f1 (z) and f2 (z) by

1 X
an,1 an,2 z n .
(f1 ∗ f2 ) = +
z n=1

49

(3)

F. Ghanim, M.Darus - Linear operators associated with a subclass ...
Let us define the function φ̃(a, c; z) by


1 X
(a)n+1

an z n ,

φ̃ (a, c; z) = +
z n=0 (c)n+1





(4)

for c 6= 0, −1, −2, ..., and a ∈ C/ {0}, where (λ)n = λ(λ+1)n+1 is the Pochhammer symbol. We note that
φ̃ (a, c; z) =

1
2 F1 (1, a, c; z)
z

where
2 F1 (b, a, c; z) =



X
(b)n (a)n z n

n=0

(c)n

n!

is the well-known Gaussian hypergeometric function. Corresponding to the
function φ̃(a, c; z), using the Hadamard product for f ∈ Σ, we define a new
linear operator L∗ (a, c) on Σ by


1 X
(a)n+1

an z n .
L (a, c) f (z) = φ̃ (a, c; z) ∗ f (z) = +
z n=1 (c)n+1








(5)

The meromorphic functions with the generalised hypergeometric functions
were considered recently by Dziok and Srivastava [5], [6], Liu [8], Liu and
Srivastava [9], [10], [11], Cho and Kim [3].

For a function f ∈ L∗ (a, c) f (z) we define
I 0 (L∗ (a, c) f (z)) = L∗ (a, c) f (z) ,
and for k = 1, 2, 3, ...,


′


I k (L∗ (a, c) f (z)) = z I k−1 L∗ (a, c) f (z) +

(a)

1 X
nk n+1 an z n .
+
=
z n=1 (c)n+1

50





2
z
(6)


F. Ghanim, M.Darus - Linear operators associated with a subclass ...
We note that I k (L∗ (a, a) f (z)) studied by Frasin and Darus [7].
Also, it follows from (6) that
z (L(a, c)f (z))′ = aL(a + 1, c)f (z) − (a + 1) L(a, c)f (z).

Now, for α(−1 ≤ α < 1) and β(β ≥ 1), we let Σ∗ (α, β, k) be the subclass of A
consisting of the form (1) and satisfying the analytic criterion




I k+1 L∗ (a, c) f (z)

I k+1 L∗ (a, c) f (z)




α
>

β

1

,
k

k



I L (a, c) f (z)
I L (a, c) f (z)
)

(

z∈U

(7)


where L∗ (a, c) f (z) is given by (5).

The main objective of this paper is to obtain necessary and sufficient conditions
for the functions f ∈ Σ∗ (α, β, k). Furthermore, we obtain extreme points,
growth and distortion bounds and closure properties for the class Σ∗ (α, β, k).
2.Basic properties
In this section we obtain necessary and sufficient conditions for functions f in
the class Σ∗ (α, β, k).

Theorem 1. A function f of the form (1) is in Σ∗ (α, β, k) if




(a)n+1
k
|an | ≤ 1 − α
n [n (1 + β) − (β + α)]


(c)n+1
n=1

X

−1 ≤ α < 1 and β ≥ 1.

Proof. It suffices to show that


)
(
I k+1 L∗ (a, c) f (z)

I k+1 L∗ (a, c) f (z)


β k ∗
− 1 − ℜ
− 1 ≤ 1 − α.


I L (a, c) f (z)
I k L∗ (a, c) f (z)

51

(8)

F. Ghanim, M.Darus - Linear operators associated with a subclass ...
We have


)
(
I k+1 L∗ (a, c) f (z)

I k+1 L∗ (a, c) f (z)


β k ∗
− 1 − ℜ
−1
I L (a, c) f (z)

I k L∗ (a, c) f (z)

P
|(a) |


(1 + β)
nk (n − 1) (c) n+1 |an | |z|n

I k+1 L∗ (a, c) f (z)
| n+1 |


n=1
− 1 ≤
≤ (1 + β) k ∗

P k |(a)n+1 |
n
I L (a, c) f (z)
1
|z|



n

n=1

|(c)n+1 |

an |z|

Letting z → 1 along the real axis, we obtain

P

|(a)n+1 |
|a |
|(c)n+1 | n
n=1

P
|(a) |
nk (c) n+1 |an |
1−
| n+1 |
n=1

(1 + β)


nk (n − 1)

This last expression is bounded above by (1 − α) if




(a)n+1
k


n [n (1 + β) − (β + α)]
|an | ≤ 1 − α
(c)n+1
n=1

X

Hence the theorem.

Our assertion in Theorem 1 is sharp for functions of the form
fn (z) =
(n ≥ 1; k ∈ N0 ).


X







(1 − α) (c)n+1

1

zn,
+

k
z n=1 n [n (1 + β) − (β + α)] (a)n+1

(9)

Corollary 1. Let the functions f be defined by (5) and let f ∈ A, then
an ≤

nk

(1 − α) (c)n+1
,
[n (1 + β) − (β + α)] (a)n+1

(n ≥ 1; k ∈ N0 ,).

52

(10)

F. Ghanim, M.Darus - Linear operators associated with a subclass ...

1
z

Theorem 2. Let f define by (1) and g(z) =
Σ∗ (α, β, k). Then the function h defined by
h (z) = (1 − λ) f (z) + λg(z) =

+


P

n=1

bn z n be in the class


1 X
qn z n ,
+
z n=1

(11)

where qn = (1 − λ) an + λbn , 0 ≤ λ < 1 is also in the class Σ∗ (α, β, k).
3.Growth and Distortion Theorem
Theorem 3. Let the function f defined by (6) be in the class Σ∗ (α, β, k).
Then
1
1
− r ≤ |f (z)| ≤ + r
r
r
Equality holds for the function
f (z) =

1
+ z.
z

Proof. Since f ∈ S ∗ (α, β, k), by Theorem 1,




(a)n+1
k
|an | ≤ 1 − α
n [n (1 + β) − (β + α)]

(c)n+1
n=1

X

Now




∞ (a)

X
X
n+1


(1 − α)
(1 − α)
an =

n=1 (c)n+1
n=1





(a)n+1
an ≤



(c)n+1





(a)n+1
k


n [n (1 + β) − (β + α)]
|an | ≤ 1 − α
(c)n+1
n=1

X

and therefore




∞ (a)
X
n+1
an ≤ 1.



n=1 (c)n+1

53

(12)

F. Ghanim, M.Darus - Linear operators associated with a subclass ...

Since f (z) =

1
z

+

∞ |(a)
P
n+1 |

an z
n=1 |(c)n+1 |

n

,






1
X
X
(a)n+1
1

an z n ≤
+
|f (z)| = +

z
|z| n=1
n=1 (c)n+1










(a)n+1
an |z|n



(c)n+1

∞ (a)
X
1
1
n+1
an ≤ + r

≤ +r


r
r
n=1 (c)n+1

and





1

X
X
(a)n+1
1

n
|f (z)| = −

an z ≥
z n=1 (c)n+1
|z| n=1





(a)n+1

an |z|n


(c)n+1




∞ (a)
X
1
1
n+1


an ≥ − r
≥ −r


r
r
n=1 (c)n+1

which yields the theorem.

Theorem 4. Let the function f defined by (6) be in the class Σ∗ (α, β, k).
Then
1
1


1

|f
(z)|

+ 1,
r2
r2
Equality holds for the function f (z) =

1
z

(13)

+ z.

Proof. we have









−1

(a)
X
X
(a)
1
n+1

n+1

n−1
an |z|n−1
n
|f (z)| = 2 +
n
an z ≤ 2 −


z
(c)
|z|
n+1
n=1 (c)n+1
n=1



∞ (a)
X
1
n+1


≤ 2−
nan

r
n=1 (c)n+1

54

(14)

F. Ghanim, M.Darus - Linear operators associated with a subclass ...
Since f (z) ∈ Σ∗ (α, β, k), we have



∞ (a)

X
X
n+1

nan ≤
(1 − α)
nk−1 [n (1 + β) − (β + α)]


n=1 (c)n+1
n=1

Hence,





(a)n+1

nan ≤ 1 − α


(c)n+1




∞ (a)
X
n+1
nan ≤ 1.



n=1 (c)n+1

(15)

Substituting (14) in (15), we get

|f ′ (z)| ≤

1
+1
r2

|f ′ (z)| ≥

1
−1
r2

This completes the proof.
4.Radii Of Starlikeness and Convexity
The radii of Starlikeness and convexity for the class for the class Σ∗ (α, β, k) is
given by the following theorems.
Theorem 5. If the function f be defined by (6) is in the class Σ∗ (α, β, k) then
f is meromorphically starlike of order δ(0 ≤ δ < 1) in |z − p| < |z| < r1 , where
r1 = r1 (α, β, k) = inf

n≥1

(

nk (1 − δ) [n (1 + β) − (β + α)]
(n + 2 − δ) (1 − α)

)

1
n+1

.

(16)

The result is sharp for the function f given by (9).
Proof. It suffices to prove that


′



z I k f (z)


+
1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52