paper 14-18-2009. 131KB Jun 04 2011 12:03:07 AM

ACTA UNIVERSITATIS APULENSIS

No 18/2009

ON VECTOR-BUNDLE VALUED COHOMOLOGY ON
COMPLEX FINSLER MANIFOLDS

Cristian Ida
Abstract. In this paper we define a complex adapted connection of type
Bott on vertical bundle of a complex Finsler manifold. When this connection
is flat we get a vertical vector valued cohomology. The notions are introduced
by analogy with the real case for foliations. Finally, using the partial Bott
connection we give a characterization of strongly K¨ahler-Finsler manifolds.
2000 Mathematics Subject Classification: 53B40, 32C35.
Key Words: Complex Finsler manifolds, vertical Bott type connection,
cohomology.
1. Introduction and preliminaries notions
In the first section of this paper, following [2], [3], [7], we recall briefly some
notions on complex Finsler manifolds, concerning to the Chern-Finsler linear
connection, the canonical linear connection and the Levi-Civita connection
associated with the Hermitian metric structure on holomorphic tangent bundle

given by Sasaki lift of the fundamental tensor gij . In the second section, by
analogy with the real case for foliations (see [4], [9], [11]), we define an adapted

vertical complex connection of Bott type on vertical bundle VC (T M ), denoted
by Dv . In the third section we assume that the connection Dv is flat, then the

natural exterior derivative dDv associated with Dv on VC (T M )-vector valued
differential forms has the property d2Dv = 0. Thus we can think a cohomology of



VC (T M )-vector valued differential forms H ∗ (T M, VC (T M )). Finally, using
the partial Bott connection [2], we give a characterization of strongly K¨ahlerFinsler manifolds.

Let π : T M −→ M be the holomorphic tangent bundle of a complex manifold M, dimC M = n. Denote by (π −1 (U ), (z k , η k ))k=1,n the induced complex

local coordinates on T M, where (U, z k ) is a local chart domain of M.
151

C. Ida - On vector-bundle valued cohomology on complex Finsler manifolds



At local change charts on T M, the transformation rules of these coordinates are given by:

∂z k j
′k
′k
′k
z = z (z); η =
η
(1)
∂z j
′k

′k

where ∂z
are holomorphic functions on z and det( ∂z
) 6= 0
∂z j

∂z j

It is well known the fact that T M has a structure
of 2n-dimensional com′
∂z k
plex manifold, because the transition functions ∂zj are holomorphic.



′′

Consider TC (T M ) = T (T M )⊕T (T M ) the complexified tangent bundle



′′

of T M where T (T M ) and T (T M ) = T ′ (T ′ M ) are the holomorphic and

antiholomorphic tangent bundles of T M.


On T M we fix an arbitrary complex nonlinear connection, briefly (c.n.c)
having the local coefficients Nkj (z, η), which determines the following decomposition:






T (T M ) = H (T M ) ⊕ V (T M )
(2)
By conjugation over all, we get a decomposition of the complexified tangent
bundle, namely:











′′



′′



TC (T M ) = H (T M ) ⊕ V (T M ) ⊕ H (T M ) ⊕ V (T M )

(3)

The adapted frames with respect to this (c.n.c) are given by,
.

.


.

.

{δk = ∂k − Nkj ∂j ; ∂ k ; δk = ∂k − Nkj ∂j ; ∂ k }
where ∂k =


;
∂z k

.

∂k =


∂η k

(4)


and the adapted coframes, are given by

{dz k ; δη k = dη k + Njk dz j ; dz k ; δη k = dη k + Njk dz j }

(5)

Definition 1 A strictly pseudoconvex complex Finsler metric on M , is a con′
tinuous function F : T M → R satisfying:

(i) L := F 2 is C ∞ -smooth on T M − {0};
(ii) L(z, η) ≥ 0 and L(z, η) = 0 ⇔ η = 0;
(iii) L(z, λη) = |λ|2 L(z, η), ∀ λ ∈ C;
. .
(iv) the following Hermitian matrix (gij =∂ i ∂ j (L)) is positive defined on

T M − {0} and defines a Hermitian metric on vertical bundle.
Definition 2 The pair (M, F ) is called a complex Finsler manifold.
152

C. Ida - On vector-bundle valued cohomology on complex Finsler manifolds

Proposition 1 A (c.n.c) on (M, F ) depending only on the complex Finsler
metric F is the Chern-Finsler (c.n.c) given by:
CF

.

Nkj = g mj ∂k ∂ m (L)

(6)


Proposition 2 The Lie brackets of the adapted frames from TC (T M ), with
repect to the Chern-Finsler (c.n.c) are,
[δj , δk ] =
.

CF
(δk Nji

CF

.
−δj Nki ) ∂i =

. CF

.

0; [δj , δk ] =
. CF

.

CF
.
(δk Nji ) ∂ i

.

.


CF
.
−(δj Nki ) ∂i ;

.

.

.

[δj , ∂k ] = (∂k Nji ) ∂i ; [δj , ∂k ] = (∂k Nji ) ∂i ; [∂j , ∂k ] = [∂j , ∂k ] = 0
and their conjugates.
In the sequel we will consider the adapted frames and adapted coframes with
respect to the Chern-Finsler (c.n.c) and the Hermitian metric structure G on

T M given by the Sasaki lift of fundamental tensor gij :
G = gij dz i ⊗ dz j + gij δη i ⊗ δη j
CF

(7)

CF

CF

CF

i
Also we recall the Chern-Finsler linear connection DΓ= (Nji , Lijk , Cjk
) and the
c

c

CF

c

c

c

i
i
canonical linear connection DΓ= (Nji , Lijk , Cjk
, Lijk , Cjk
), where
CF

CF

.

i
Lijk = g mi δk gjm ; Cjk
= g mi ∂ k gjm ;
c
c
1 mi
i
=
Lijk =
g (δk gjm + δj gkm ); Cjk
2
c
c
1 im
i
=
Lijk =
g (δk gmj − δm gkj ); Cjk
2

.
1 mi .
g (∂ k gjm + ∂ j gkm );
2
.
1 im .
g (∂ k gmj − ∂ m gkj )
2

for details (see [7] p.51, p.61). By homogenity conditions of complex Finsler
metric F , we note that
CF

. CF

CF

CF

i
i
=Ckj
Lijk =∂j Nki ; Cjk

(8)

We denote by ∇ the Levi-Civita connection associated to G, i.e. ∇G = 0 and
the torsion T∇ = 0. According to [7] p.52 and [3] p.93, the local expression of
153

C. Ida - On vector-bundle valued cohomology on complex Finsler manifolds
∇ is given by:
c

CF .

.

i
∇δk δj = Lijk δi ; ∇δk ∂j = Bjk
δi + Lijk ∂i ;
c

.

c

.

.

i
i
i
∇δk δj = Likj δi + Djk
∂i + Lijk δi + Ejk
∂i ; ∇δk ∂j = Fjk
δi ;
CF .

.

.

i
i
i
i
∂i
δi + Hjk
∂i ; ∇∂. δj = Fkj
∇∂. δj = Bkj
δi ; ∇∂. ∂j = Gijk δi + Cjk
k

k

k

where
CF

CF
.
.
1
1 li
i
i
g (ghl δj Nkh − ∂l gkj );
Bjk
= g li (gjh δk Nlh + ∂j gkl ); Djk
=
2
2
CF
CF
.
.
1
1
i
i
Ejk
= − g il (glh δk Njh + ∂l gkj ); Fjk
= − g li (ghj δl Nkh − ∂j gkl );
2
2

Gijk

=g

li

CF
gjh ∂k Nlh ;
.

;

i
Hjk

=−

. CF
∂k Nji

and their conjugates.
We remark that the Levi-Civita connection ∇ is not compatible with the

natural complex structure J on T M, defined by:
.

.

.

.

J(δk ) = iδk ; J(δk ) = −iδk ; J(∂ k ) = i ∂ k ; J(∂ k ) = −i ∂ k

(9)

Imposing the condition that ∇ to be compatible with the complex structure
J, namely:


(∇ξ1 J)ξ2 = ∇ξ1 (Jξ2 ) − J(∇ξ1 ξ2 ) = 0; ∀ ξ1 , ξ2 ∈ Γ(TC (T M ))

(10)

we get the conditions,
.

CF

δi gjk = δj gik ; g il ∂ k gji = δk (Njl )
and in this case we call the metric structure G-total K¨ahler.

154

(11)

C. Ida - On vector-bundle valued cohomology on complex Finsler manifolds
2. The vertical Bott type complex connection
In the similar manner with the real case for foliations, (see [4], [9], [11]),

for the complex vertical vector fields V, V1 , V2 ∈ Γ(VC (T M )) and a complex


horizontal vector field X ∈ Γ(HC (T M )), we define on vector bundle VC (T M )
a connection Dv , as follows:


′′



′′

v
DVv 1 V2 = (v + v )∇V1 V2 ; DX
V = (v + v )[X, V ]


(12)

′′

where v and v are the complex vertical projectors, and ∇ is the Levi-Civita
connection.
Definition 3 The connection Dv from (12) is called vertical Bott type complex connection.
The local expression of the connection Dv is given by,
.



CF .

.

′′

.



.

′′

CF .

i
∂i ; Dδvk ∂j = (v + v )[δk , ∂j ] =Lijk ∂i
D∂v. ∂j = (v + v )∇∂. ∂j =Cjk
k

k

.



.

′′

.



.

′′

. CF

.

D∂v. ∂j = (v + v )∇∂. ∂j = 0; Dδvk ∂j = (v + v )[δk , ∂j ] = (∂j Nki ) ∂i
k

k





and their conjugates, since Dξv V = Dξv V , ∀ ξ ∈ Γ(TC (T M )), V ∈ Γ(VC (T M )).
v

Let RD and Rv∇ be the curvature tensors on VC (T M ) induced by Dv and

′′
∇, where v = v + v . For the complex horizontal vector fields X, Y and the
complex vertical vector fields U, V, W we have,
Proposition 3

v

D
V = −v∇V v[X, Y ]
(i) RX,Y
v

D
V = (LX v∇)U V
(ii) RX,U
v

v∇
D
V = RU,W
V
(iii) RU,W

where LX denotes the Lie derivative.
v

D
v
v
v
Proof: (i) RX,Y
V = DX
DYv V − DYv DX
V − D[X,Y
] V = v[X, v[Y, V ]]−

v[Y, v[X, V ]] − v[h[X, Y ], V ] − v∇v[X,Y ] V = [X, [Y, V ]] − [Y, [X, V ]]−
v[[X, Y ] − v[X, Y ], V ] − v∇v[X,Y ] V = [X, [Y, V ]] − [Y, [X, V ]] − [[X, Y ], V ]+
155

C. Ida - On vector-bundle valued cohomology on complex Finsler manifolds
[v[X, Y ], V ] − v∇v[X,Y ] V = [v[X, Y ], V ] − v∇v[X,Y ] V. From T∇ = 0 we have,
[v[X, Y ], V ] = v[v[X, Y ], V ] = v∇v[X,Y ] V − v∇V v[X, Y ].
So,
v

D
RX,Y
V = v∇v[X,Y ] V − v∇V v[X, Y ] − v∇v[X,Y ] V = −v∇V v[X, Y ]

The relations (ii) and (iii) follows in a similar manner. Q.e.d
Remark 1 Proposition 2.1 shows that the curvature of the vertical Bott type
connection Dv , is related only in terms of the induced Levi-Civita connection

on VC (T M ).
.

.

Taking all combination of X, Y, U, V, W in local frames {δk ; ∂ k ; δk ; ∂ k } a direct
calculus leads to the following nonzero curvature of the vertical Bott type
complex connection Dv :
CF

.

v



CF .

CF

.

CF

.

l
l
v RδDk ,δ ∂ i = −δj (Llik ) ∂ l −δj (Nkm ) Cmi
∂ l =Ri,jk ∂ l
i

v

′′

v
RδDk ,δ
i

.

∂i =

CF
.
l
∂ i δk (Nj ) ∂ l =
.



v

.

.



v

.

CF

CF

g

.

l
Ri,jk
∂l
CF

.

.

CF .

CF

.

l
l
v RδD ,∂. ∂ i = − ∂ i (Lljk ) ∂ l − ∂ i (Nkm ) Cmj
∂ l =Qi,jk ∂ l
j
k
CF

.

.

l
v RδD ,∂. ∂ i = δk (Cijl ) ∂ l =Pi,jk
∂l
j
k

v

′′



v
RδD ,∂.
j
k

.

∂i =
.

v

CF
CF .
m
l
∂ m (Nk ) Cij ∂ l
.

.

CF

.



CF
.
l
∂ j ∂ i (Nk ) ∂ l =
.

.

g

.

l
Pi,jk
∂l

CF .

l
l
v R∂D. ,∂. ∂ i = − ∂ j (Cik
) ∂ l =Si,jk
∂l
k
j

and their conjugates.
Remark 2 The curvatures of the vertical Bott type complex connection differs from the curvatures of the Chern-Finsler connection by two components,
g

g

l
l
.
and Pi,jk
namely Ri,jk

Proposition 4 If the complex Finsler metric is locally Minkowski and the
Hermitian metric G is vertical Kahler, i.e. it satisfy the second condition of
(11), then the vertical Bott type conection Dv is flat.
156

C. Ida - On vector-bundle valued cohomology on complex Finsler manifolds
Proof: If the complex Finsler metric is locally Minkowski, namely L = L(η)
CF
Nkj =

[2], then gij = gij (η) and
CF
l
Si,jk

connection except

0. Thus all curvatures of the vertical Bott type
.

are vanish. Imposing the condition g il ∂ k gji = 0 we

CF
l
= 0. Q.e.d
get Si,jk

3. Cohomology with vertical vector values


Let Ωp (VC (T M )) be the set of all VC -vector valued differential p-forms




on T M and Ω(VC (T M )) =

4n
P



p=0



Ωp (VC (T M )). We note that Ω0 (VC (T M )) =





Γ(VC (T M )) and for every φ ∈ Ωp (VC (T M )) we have,




φ(ξ1 , ..., ξp ) ∈ Γ(VC (T M )), ∀ ξ1 , ..., ξp ∈ Γ(TC (T M ))

(13)

By analogy with the real case for foliations, we define the following exterior
differential with respect to the complex connection Dv :




dDv : Ωp (VC (T M )) −→ Ωp+1 (VC (T M ))
where
d

Dv

φ(ξ0 , ξ1 , ..., ξp ) =

p
X
j=0

X

+

i+j

(−1)

0≤i

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52