paper 01-18-2009. 94KB Jun 04 2011 12:03:06 AM

ACTA UNIVERSITATIS APULENSIS

No 18/2009

THE INTEGRAL OPERATOR ON THE SH (β) CLASS

Daniel Breaz and Nicoleta Breaz1

Abstract. In this paper we present a convexity condition for a integral
operator F defined in formula (2) on the class SH (β).
2000 Mathematics Subject Classification: 30C45.
Keywords and phrases: Univalent functions, integral operator, convex functions.
1. 1.Introduction
Let U = {z ∈ C, |z| < 1} be the unit disc of the complex plane and denote by H (U ), the class of the olomorphic functions in U. Consider A =
{f ∈ H (U ) , f (z) = z + a2 z 2 + a3 z 3 + ..., z ∈ U } be the class of analytic functions in U and S = {f ∈ A : f is univalent in U }.
Denote with K the class of the olomorphic functions in U with f (0) =
f ′ (0) − 1 = 0, where is convex functions in U , defined by
zf ′′ (z)
+ 1 > 0, z ∈ U .
K = f ∈ H (U ) ; f (0) = f ′ (0) − 1 = 0, Re
f ′ (z)

(

(

)

)

In the paper (3) J. Stankiewicz and A. Wisniowska introduced the class of
univalent functions SH (β), define by the next inequality:


)
(
zf ′ (z)
√

√

√ zf ′ (z)





2

1
2
+

2

1
,

< Re
f (z)

f (z)


for some β > 0 and for all z ∈ U .
1

Supported by the GAR 14/2006.

7

(1)

D.Breaz, N. Breaz - The integral operator on the SH (β) class
We consider the integral operator
F (z) =

Z

f1 (t)
t

z


0

!α1

fn (t)
· ... ·
t

!αn

(2)

dt

and we study your properties.
Remark. We observe that for n = 1 and α1 = 1 we obtain the integral
operator of Alexander.
2.Main results
Theorem 1.Let αi , i ∈ {1, ..., n} the real numbers with the properties αi >
0 for i ∈ {1, ..., n} and


n
X
2
√
 √ .
(3)
αi ≤

2

1
+ 2
i=1

We suppose that the functions fi ∈ SH (β) for i = {1, ..., n} and β > 0. In
this conditions the integral operator defined in (2) is convex.
Proof. We calculate for F the derivatives of the first and second order.
From (2) we obtain:



F (z) =

f1 (z)
z

!α1

fn (z)
· ... ·
z

!αn

and
′′

F (z) =

n

X
i=1

αi

fi (z)
z

!αi −1

n
fj (z)
zfi′ (z) − fi (z) Y
zfi (z)
z
j=1

!

!αj


j6=i

F ′′ (z)
zf1′ (z) − f1 (z)
zfn′ (z) − fn (z)
=
α
+
...
+
α
.
1
n
F ′ (z)
zf1 (z)
zfn (z)
!


!

fn′ (z) 1
f1′ (z) 1
F ′′ (z)
+
...
+
α
.
=
α


n
1
F ′ (z)
f1 (z) z
fn (z) z
!


Multiply the relation (4) with z we obtain:
8

!

(4)

D.Breaz, N. Breaz - The integral operator on the SH (β) class

n
n
n
X
zfi′ (z) X
zfi′ (z)
zF ′′ (z) X
αi
αi
αi .

=
−1 =

F ′ (z)
fi (z)
fi (z)
i=1
i=1
i=1

!

(5)

The relation (5) is equivalent with
n
n
X
zfi′ (z) X
zF ′′ (z)
α
αi + 1.
+
1
=

i
F ′ (z)
fi (z)
i=1
i=1

We multiply the relation (6) with 2 and obtain:



n
n √

X
zF ′′ (z)
zfi′ (z) √ X
+
1
=

αi + 2.
2

2
i

F (z)
fi (z)
i=1
i=1

!

(6)

(7)

The equality (7) is equivalent with:


√
√  zF ′′ (z)
√ zf ′ (z)
2 F ′ (z) + 1 = α1 2 f11(z) + 2α1 β
2 − 1 + ...
√

√ ′ (z)
n
+αn 2 zf
+

β
2

1

n (z)
f√
 n√ P

Pn
n
− i=1 2αi β
2 − 1 − 2 i=1 αi + 2.

We calculate the real part from both terms of the above equality and obtain:


n√
 ′′
o
√


zf1′ (z)
(z)
+
1
=
α
Re
2Re zF
2
+

2

1
+ ...
F ′ (z)


n√1
o f1 (z)√
zfn′ (z)
2
2−1 −
+αn Re
+ 2β
√ fn (z)  √ P

Pn
n
− i=1 2αi β
2 − 1 − 2 i=1 αi + 2.

Because fi ∈ SH (β) for i = {1, ..., n} we apply in the above relation the
inequality (1) and obtain:





√
zf (z)
+ 1 > α1 f11(z) − 2β
2 − 1 + ...


√

n (z)
+αn zf
2

1



fn (z)



√ Pn

Pn
− i=1 2αi β
2 − 1 − 2 i=1 αi + 2.

2Re


zf (z)



zF ′′ (z)
F ′ (z)

Because αi fii(z) − 2β


√




2 − 1 > 0 for all i ∈ {1, ..., n}, obtain that

n
n
 √ X
√

X
zF ′′ (z)
αi + 2.
2Re
2

1

2

β
+
1
>

i

F (z)
i=1
i=1

!

9

(8)

D.Breaz, N. Breaz - The integral operator on the SH (β) class
Using the hypothesis (3) in (8) we have:
zF ′′ (z)
Re
+1 >0
F ′ (z)
!

(9)

so, F is the convex function.
Corollary 2. Let α the real numbers with the properties 0 < α ≤



2
√ .
2β ( 2−1)+ 2


We suppose that the functions
f ∈ SH (β) and β > 0. In this conditions the
R z  f (z) α
dt is convex.
integral operator F (z) = 0 z
Proof. In the Theorem 1, we consider n = 1, α1 = α and f1 = f .
References
[1] M. Acu, Close to convex functions associated with some hyperbola, Libertas Mathematica, Tomus XXV (2005), 109-114.
[2] D. Breaz, N. Breaz, Two integral operators, Studia Universitatis Babe¸s
-Bolyai, Mathematica, Cluj Napoca, No. 3-2002,pp. 13-21.
[3] J. Stankiewicz, A. Wisniowska, Starlike functions associated with some
hyperbola, Folia Scientiarum Universitatis Tehnicae Resoviensis 147, Matematyka 19(1996), 117-126.
Authors:
Daniel Breaz
Department of Mathematics
” 1 Decembrie 1918 ” University of Alba Iulia
Address: Alba Iulia, Str. N. Iorga, No. 11-13, 510009, Alba
email:[email protected]
Nicoleta Breaz
Department of Mathematics
” 1 Decembrie 1918 ” University of Alba Iulia
Address: Alba Iulia, Str. N. Iorga, No. 11-13, 510009, Alba
email:[email protected]

10

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52