paper 10-17-2009. 111KB Jun 04 2011 12:03:06 AM

ACTA UNIVERSITATIS APULENSIS

No 17/2009

SUFFICIENT CONDITIONS FOR UNIVALENCE OF A
GENERAL INTEGRAL OPERATOR

C.Selvaraj and K.R.Karthikeyan
Abstract. Using Dziok-Srivastava operator, we define a new family of
integral operators. For this general integral operator we study some interesting
univalence properties, to which a number of univalent conditions would follow
upon specializing the parameters involved.
2000 Mathematics Subject Classification: 30C45.
Keywords and Phrases: Analytic functions, univalent functions, Hadamard
product (or convolution), integral operators.
1. Introduction, Definitions And Preliminaries
Let A1 = A denote the class of functions of the form
f (z) = z +


X


an z n

an ≥ 0,

(1)

n=2

which are analytic in the open disc U = {z : z ∈ C | z |< 1} and S be the
class of function f (z) ∈ A which are univalent in U.
For αj ∈ C (j = 1, 2, . . . , q) and βj ∈ C \ {0, −1, −2, . . .} (j = 1, 2, . . . , s),
the generalized hypergeometric function q Fs (α1 , . . . , αq ; β1 , . . . , βs ; z) is defined by the infinite series
q Fs (α1 , α2 , . . . , αq ; β1 , β2 , . . . , βs ; z) =


X
(α1 )n . . . (αq )n z n
(β1 )n . . . (βs )n n!
n=0


(q ≤ s + 1; q, s ∈ N0 = {0, 1, 2, . . .}; z ∈ U),
87

C.Selvaraj, K.R.Karthikeyan - Sufficient Conditions For Univalence
where (x)n is the Pochhammer symbol defined by
(
1
if n = 0
(x)n =
x(x + 1)(x + 2) . . . (x + n − 1)
if n ∈ N = {1, 2, , . . .}.
Corresponding to a function h(α1 , . . . , αq ; β1 , . . . , βs ; z) defined by
h(α1 , . . . , αq ; β1 , . . . , βs ; z) := z q Fs (α1 , α2 , . . . , αq ; β1 , β2 , . . . , βs ; z),
the Dziok and Srivastava operator H(α1 , . . . , αq ; β1 , . . . , βs ; z)f (z) is defined
by the Hadamard product
H(α1 , . . . , αq ; β1 , . . . , βs ; z)f (z) := h(α1 , . . . , αq ; β1 , . . . , βs ; z) ∗ f (z)

For convenience, we write



X
(α1 )n−1 . . . (αq )n−1 an z n
=z+
(β1 )n−1 . . . (βs )n−1 (n − 1)!
n=2

(2)

Hsq (α1 , β1 )f := H(α1 , . . . , αq ; β1 , . . . , βs ; z)f (z).
The linear operator Hsq (α1 , β1 )f includes (as its special cases) various other
linear operators which were introduced and studied by Hohlov, Carlson and
Shaffer, Ruscheweyh. For details see [1].
Using Dziok-Srivastava operator, we now introduce the following:
Definition 1. For γ ∈ C. We now define the integral operator Fγ (α1 , β1 ; z) :
An −→ A
Z
γ−1
 z
Fγ (α1 , β1 ; z) =

Hsq (α1 , β1 )f1 (t)
...
(3)
1 + n(γ − 1)
0

1
! 1+n(γ−1)

γ−1
,
Hsq (α1 , β1 )fn (t)
dt

where fi ∈ A and Hsq (α1 , β1 )f (z) is the Dziok-Srivastava operator.

Remark 1. It is interesting to note that the integral operator Fγ (α1 , β1 ; z)
generalizes many operators which were introduced and studied recently. Here
we list a few of them
88


C.Selvaraj, K.R.Karthikeyan - Sufficient Conditions For Univalence
1. Let q = 2, s = 1, α1 = β1 and α2 = 1, then the operator Fγ (α1 , α1 ; z)
reduces to an integral operator

Z
Fγ (z) = (n(γ − 1) + 1)

0

z

1
 (n(γ−1)+1)
γ−1
γ−1
f1 (t)
. . . fn (t)
dt.
, (4)


studied by D.Breaz and N.Breaz [2].

2. When q = 2, s = 1, α1 = 2, β1 = 1 and α2 = 1, the integral operator
Fγ (2, 1; z) reduces to an operator of the form

Z
Fγ (z) = (n(γ−1)+1)

z
n(γ−1)

t

0

1
 (n(γ−1)+1)
γ−1
γ−1


dt.
. . . fn (t)
f1 (t)


,
(5)

where γ ≥ 0.
We now state the following lemma which we need to establish our results
in the sequel.
Lemma 1.[3] If f ∈ A satisfies the condition
2 ′

z f (z)



f 2 (z) − 1 ≤ 1, for all z ∈ U,


(6)

then the function f (z) is univalent in U.

Lemma 2.(Schwartz Lemma) Let f ∈ A satisfy the condition | f (z) |≤ 1,
for all z ∈ U, then
| f (z) |≤| z |, for all z ∈ U,
and equality holds only if f (z) = ǫz, where | ǫ |= 1.
Pascu [4, 5] has proved the following result
Lemma 3. Let β ∈ C, Reβ ≥ α > 0. If f ∈ A satisfies
′′
1− | z |2Re α zf (z)
f ′ (z) ≤ 1 (z ∈ U),
Re α

then the integral operator

 Z
Fβ (z) = β


z

0

89

β−1

t

 β1
f (t) dt


C.Selvaraj, K.R.Karthikeyan - Sufficient Conditions For Univalence
is univalent.
Lemma 4. Let g ∈ A satisfies the condition (6) and let α be a complex
number with | α − 1 |≤ Re3 α . If | g(z) |≤ 1, ∀ z ∈ U then the function
z


 Z
Gα (z) = α

g

(α−1)

0

 α1
(t)dt

belongs to S.
2.Main Results
Theorem 1. Let fi ∈ A, γ ∈ C. If

2 q

z (Hs (α1 , β1 )fi (z))′

≤ 1, | γ − 1 |≤ Re γ ,


1
q

(Hs (α1 , β1 )fi (z))2
3n

and | Hsq (α1 , β1 )fi (z) |≤ 1

for all z ∈ U then Fγ (α1 , β1 ; z) given by (3) is univalent.
Proof. From the definition of the operator Hsq (α1 , β1 )f (z), it can be easily
seen that
Hsq (α1 , β1 )f (z)
6= 0 (z ∈ U)
z
and moreover for z = 0, we have
γ−1
γ−1
 q
 q
Hs (α1 , β1 )fn (z)
Hs (α1 , β1 )f1 (z)
...
=1
z
z
From (3), we have
Fγ (α1 , β1 ; z) =


1 + n(γ − 1)

Z

z
n(γ−1)

t

0





Hsq (α1 , β1 )f1 (t)
t

Hsq (α1 , β1 )fn (t)
t

γ−1

γ−1

...
1
! 1+n(γ−1)

dt

We consider the function
γ−1
γ−1
 q
Z z q
Hs (α1 , β1 )f1 (t)
Hs (α1 , β1 )fn (t)
h(z) =
...
dt
t
t
0
90

.

(7)

C.Selvaraj, K.R.Karthikeyan - Sufficient Conditions For Univalence
The function h is regular in U and from (7) we obtain


h (z) =



Hsq (α1 , β1 )f1 (z)
z

γ−1

...



Hsq (α1 , β1 )fn (z)
z

γ−1

and
 q


(Hs (α1 , β1 )f1 (z))
1 ′

h (z) + . . .
h (z) = (γ − 1)
Hsq (α1 , β1 )f1 (z)
z

 q

1 ′
(Hs (α1 , β1 )fn (z))

h (z)
+(γ − 1)
Hsq (α1 , β1 )fn (z)
z
′′

From the above inequalities we have




′′
z(Hsq (α1 , β1 )f1 (z))
zh (z)
= (γ − 1)
− 1 + ...
h′ (z)
Hsq (α1 , β1 )f1 (z)



z(Hsq (α1 , β1 )fn (z))
−1 .
+(γ − 1)
Hsq (α1 , β1 )fn (z)
On multiplying the modulus of equation (8) by

1−|z|2Re γ
Re γ

(8)

> 0, we obtain

"
′′



z(Hsq (α1 , β1 )f1 (z))′
1− | z |2Re γ zh (z) 1− | z |2Re γ


| γ −1 |
+1 +
h′ (z) ≤
Re γ
Re γ
Hsq (α1 , β1 )f1 (z)


#
z(Hsq (α1 , β1 )fn (z))′
+1
. . . + | γ − 1 |
Hsq (α1 , β1 )fn (z)



1− | z |2Re γ z 2 (Hsq (α1 , β1 )f1 (z)) | Hsq (α1 , β1 )f1 (z) |
+ 1 + ...
≤| γ − 1 |
(Hsq (α1 , β1 )f1 (z))2
Re γ
|z|



1− | z |2Re γ z 2 (Hsq (α1 , β1 )fn (z)) | Hsq (α1 , β1 )fn (z) |
+|γ−1|
+1 .
(Hsq (α1 , β1 )fn (z))2
Re γ
|z|

Since Hsq (α1 , β1 )f (z) satisfies the conditions of the Schwartz Lemma, on ap-

91

C.Selvaraj, K.R.Karthikeyan - Sufficient Conditions For Univalence
plying the same on the above inequality, we obtain

′′



1− | z |2Re γ zh (z)
1− | z |2Re γ z 2 (Hsq (α1 , β1 )f1 (z))
+2 +
−1
≤|
γ−1
|
(Hsq (α1 , β1 )f1 (z))2
h′ (z)

Re γ
Re γ





1− | z |2Re γ z 2 (Hsq (α1 , β1 )fn (z))
+2

1
... + | γ − 1 |
q

(Hs (α1 , β1 )fn (z))2
Re γ
3|γ−1|
3n | γ − 1 |
3|γ−1|
+ ... +
=
.

Re γ
Re γ
Re γ
But | γ − 1 |≤

Re γ
,
3n

so we obtain for all z ∈ U
′′
1− | z |2Re γ zh (z)
h′ (z) ≤ 1.
Re γ

(9)

It follows from Lemma 3 that


1 + n(γ − 1)

Z

1
! 1+n(γ−1)

z


tn(γ−1) h (t) dt

0

∈S

Since
Z


1 + n(γ − 1)

1 + n(γ − 1)

= Fγ (α1 , β1 ; z),

z


tn(γ−1) h (t) dt

0

Z

0

z

1
! 1+n(γ−1)

=

1
! 1+n(γ−1)


γ−1
γ−1
Hsq (α1 , β1 )f1 (t)
. . . Hsq (α1 , β1 )fn (t)
dt

hence Fγ (α1 , β1 ; z) ∈ S.
Putting q = 2, s = 1, α1 = β1 and α2 = 1, in Theorem 1, we have
Corollary 1. [2] Let fi ∈ A, γ ∈ C. If

2 ′
z fi (z)


≤ 1, | γ − 1 |≤ Re γ ,

1
(fi (z))2

3n
92

and | fi (z) |≤ 1

C.Selvaraj, K.R.Karthikeyan - Sufficient Conditions For Univalence
for all z ∈ U then the operator
1
 (n(γ−1)+1)
γ−1
γ−1
f1 (t)
. . . fn (t)
dt

z


Z
Fγ (z) = (n(γ − 1) + 1)

0

is univalent.

Theorem 2. Let f ∈ A satisfy

2 q

z (Hs (α1 , β1 )f (z))′
< 1,


1
q

(Hs (α1 , β1 )f (z))2

and γ ∈ C with | γ − 1 |≤
function
Fγk (α1 , β1 ; z)

=



Re γ
.
3k

∀z ∈ U

If | Hsq (α1 , β1 )f (z) |≤ 1, ∀ z ∈ U, then the


k(γ − 1) + 1

Z

z

(Hsq (α1 , β1 )f (t))k(γ−1)

0

1
 k(γ−1)+1
dt

(10)

is univalent.
Proof. From (10) we have
Fγk (α1 , β1 ; z) =


k(γ − 1) + 1

and let
h(z) =

Z

0

z

Z



z

tk(γ−1)

0



Hsq (α1 , β1 )f (t)
t

Hsq (α1 , β1 )f (t)
t

k(γ−1)

!k(γ−1)

1
! k(γ−1)+1

dt

dt.

From here using arguments similar to those detailed in Theorem 1, we can
prove the assertion of the Theorem 2.
We note that on restating the Theorem 2 for the choice of q = 2, s =
1, α1 = β1 and α2 = 1, we have the result proved by D.Breaz and N.Breaz [2].
References
[1] R. Aghalary et al., Subordinations for analytic functions defined by the
Dziok-Srivastava linear operator, Appl. Math. Comput., 187, (2007), no. 1,
13–19.
93

C.Selvaraj, K.R.Karthikeyan - Sufficient Conditions For Univalence
[2] D. Breaz and N. Breaz, An integral univalent operator, Acta Math.
Univ. Comenian. (N.S.), 7, (2007), no. 2, 137–142.
[3] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent
functions, Proc. Amer. Math. Soc., 33, (1972), 392–394.
[4] N. N. Pascu, On a univalence criterion. II, in Itinerant seminar on
functional equations, approximation and convexity (Cluj-Napoca, 1985), 153–
154, Univ. “Babe¸s-Bolyai”, Cluj.
[5] N. N. Pascu, An improvement of Becker’s univalence criterion, in Proceedings of the Commemorative Session: Simion Sto¨ılow (Bra¸sov, 1987), 43–
48, Univ. Bra¸sov, Bra¸sov.
Authors:
C.Selvaraj
Department of Mathematics,
Presidency College,
Chennai-600 005,
Tamilnadu, India
email: pamc9439@yahoo.co.in
K.R.Karthikeyan
R.M.K.Engineering College
R.S.M.Nagar,
Kavaraipettai-601206,
Thiruvallur District, Gummidipoondi Taluk,
Tamilnadu,India
email: kr karthikeyan1979@yahoo.com.

94

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52