paper 11-17-2009. 116KB Jun 04 2011 12:03:06 AM

ACTA UNIVERSITATIS APULENSIS

No 17/2009

HARMONIC UNIVALENT FUNCTIONS DEFINED BY AN
INTEGRAL OPERATOR

˘
Luminit
¸ a Ioana Cotˆırla
Abstract.We define and investigate a new class of harmonic univalent
functions defined by an integral operator. We obtain coefficient inequalities,
extreme points and distortion bounds for the functions in our classes.
2000 Mathematics Subject Classification: 30C45, 30C50, 31A05.
Keywords and phrases: Harmonic univalent functions,integral operator.
1. Introduction
A continuous complex-valued function f = u + iv defined in a complex
domain D is said to be harmonic in D if both u and v are real harmonic in D.
In any simply connected domain we can write f = h + g, where h and g are
analytic in D. A necessary and sufficient condition for f to be locally univalent
and sense preserving in D is that |h′ (z)| > |g ′ (z)|, z ∈ D. (See Clunie and

Sheil-Small [2].)
Denote by H the class of functions f = h + g that are harmonic univalent
and sense preserving in the unit disc U = {z : |z| < 1} so that f = h + g is
normalized by f (0) = h(0) = fz′ (0) − 1 = 0.
Let H(U ) be the space of holomorphic functions in U . We let:
An = {f ∈ H(U ), f (z) = z + an+1 z n+1 + . . . , z ∈ U },
with A1 = A.
We let H[a, n] denote the class of analytic functions in U of the form
f (z) = a + an z n + an+1 z n+1 + . . . ,
95

z ∈ U.

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator
The integral operator I n is defined in [5] by:
(i) I 0 f (z) = f (z);
Z
z

f (t)t−1 dt;


1

(ii) I f (z) = If (z) =

0

(iii) I n f (z) = I(I n−1 f (z)), n ∈ N and f ∈ A.
Ahuja and Jahongiri [3] defined the class H(n) (n ∈ N) consisting of all
univalent harmonic functions f = h + g that are sense preserving in U and h
and g are of the form
h(z) = z +


X

ak z k ,

g(z) =


k=2


X

bk z k ,

|b1 | < 1.

(1)

k=1

For f = h + g given by (1) the integral operator I n of f is defined as
I n f (z) = I n h(z) + (−1)n I n g(z),
where
n

I h(z) = z +



X

−n

(k)

k

n

ak z and I g(z) =

k=2


X

(2)


(k)−n bk z k .

k=1

For 0 ≤ α < 1, n ∈ N, z ∈ U , let H(n, α) the family of harmonic functions
f of the form (1) such that

 n
I f (z)
> α.
(3)
Re
I n+1 f (z)
The families H(n + 1, n, α) and H − (n + 1, n, α) include a variety of wellknown classes of harmonic functions as well as many new ones. For example
HS(α) = H(1, 0, α) is the class of sense-preserving,harmonic univalent functions f which are starlike of order α ∈ U , and HK(α) = H(2, 1, α) is the class
of sense-preserving,harmonic univalent functions f which are convex of order
α in U , and H(n + 1, n, α) = H(n, α) is the class of S˘al˘agean-type harmonic
univalent functions.
Let we denote the subclass H − (n, α) consist of harmonic functions fn =
h + g n in H − (n, α) so that h and gn are of the form

h(z) = z −


X

k

ak z ,

n−1

gn (z) = (−1)

k=2


X
k=1

96


bk z k ,

(4)

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator
where ak , bk ≥ 0, |b1 | < 1.
For the harmonic functions f of the form (1) with b1 = 0 Avci and
Zlotkiewich [1] show that if

X

k(|ak | + |bk |) ≤ 1,

k=2

then f ∈ HS(0), where HS(0) = H(1, 0, 0), and if

X


k 2 (|ak | + |bk |) ≤ 1,

k=2

then f ∈ HK(0), where HK(0) = H(2, 1, 0).
For the harmonic functions f of the form (4) with n = 0, Jahangiri in [4]
showed that f ∈ HS(α) if and only if

X

(k − α)|ak | +

k=2


X

(k + α)|bk | ≤ 1 − α

k=1


and f ∈ H(2, 1, α) if and only if

X

k(k − α)|ak | +

k=2


X

k(k + α)|bk | ≤ 1 − α.

k=1

2.Main results
In our first theorem, we deduce a sufficient coefficient bound for harmonic
functions in H(n, α).
Theorem 2.1. Let f = h + g be given by (1). If


X

{ψ(n, k, α)|ak | + θ(n, k, α)|bk |} ≤ 2,

k=1

where
ψ(n, k, α) =

(k)−n − α(k)−(n+1)
(k)−n + α(k)−(n+1)
and θ(n, k, α) =
,
1−α
1−α
97

(5)


L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator
a1 = 1, 0 ≤ α < 1, n ∈ N. Then f is sense-preserving in U and f ∈ H(n, α).
Proof. According to (2) and (3) we only need to show that
 n

I f (z) − αI n+1 f (z)
Re
≥ 0.
I n+1 f (z)
The case r = 0 is obvious. For 0 < r < 1, it follows that
 n

I f (z) − αI n+1 f (z)
Re
I n+1 f (z)
" 

 n+1 #

n
X

1
1


z(1 − α) +
ak z k
−α


k
k
k=2
= Re
∞  n+1
n  n
X
X

1
1

k
n+1

bk z k
ak z + (−1)

z +
k
k
k=2
k=1
"
#

 n
 n+1

X

1
1


(−1)n

bk z k


k
k
k=1
+






n+1
n+1
X
X

1
1

k
n+1
z+
bk z k 
ak z + (−1)


k
k
k=2
k=1
" 

 n+1 #

n
X

1
1


1−α+
ak z k−1
−α


k
k
k=2
= Re
∞  n+1
∞  n+1
X
X

1
1

k−1
n+1

ak z
+ (−1)
bk z k z −1

1 +
k
k
k=1
k=2
"
#

 n
 n+1

X

1
1


bk z k z −1
(−1)n



k
k
k=1
+






n+1
n+1
X
X

1
1

k−1
n+1
ak z
+ (−1)
1+
bk z k z −1 


k
k
k=1
k=2


1 − α + A(z)
.
= Re
1 + B(z)

For z = reiθ we have

"
 n+1 #
X  1 n
1
A(reiθ ) =
−α
ak rk−1 e(k−1)θi
k
k
k=2
98

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator

Setting

" 
 n+1 #

n
X
1
1

+(−1)n
bk rk−1 e−(k+1)θi
k
k
k=1
∞  n+1
X
1

ak rk−1 e(k−1)θi
B(re ) =
k
k=2
∞  n+1
X
1
n+1
bk rk−1 e−(k+1)θi
+(−1)
k
k=1
1 − α + A(z)
1 + w(z)
= (1 − α)
,
1 + B(z)
1 − w(z)

the proof will be complete if we can show that |w(z)| ≤ 1. This is the case
since, by the condition (5), we can write




A(z) − (1 − α)B(z)


|w(z)| =
A(z) + (1 − α)B(z) + 2(1 − α)
"

 n+1 #
∞  n
X

1
1

ak rk−1 e(k−1)θi


k
k

k=2
=

X
P∞

(k−1)θi
k−1
n
2(1−α) + k=2 C(n, k, α)ak r e
+ (−1)
D(n, k, α)bk rk−1 e−(k+1)θi

k=1
" 
#




X

1 n+1
1 n
k−1 −(k+1)θi
n

+
bk r e
(−1)

k
k

k=1

+



X
X

2(1 − α) +
C(n, k, α)ak rk−1 e(k−1)θi + (−1)n
D(n, k, α)bk rk−1 e−(k+1)θi

k=2

k=1

" 
 n+1 #

n
X
1
1
|ak |rk−1

k
k
k=2


2(1 − α) −


X

C(n, k, α)|ak |r

k=2

k−1




X
k=1

99

D(n, k, α)|bk |rk−1

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator
" 
 n+1 #

n
X
1
1
+
|bk |rk−1
k
k
k=1

+
2(1 − α) −


X

C(n, k, α)|ak |r

k=2

k−1




X

D(n, k, α)|bk |rk−1

k=1

" 
 n+1 #
n
1
1

|ak |rk−1
k
k
k=1


X

=

4(1 − α) −


X

{C(n, k, α)|ak | + D(n, k, α)|bk |}rk−1

k=1

" 
 n+1 #
n
1
1
+
|bk |rk−1
k
k
k=1


X

+

4(1 − α) −


X

{C(n, k, α)|ak | + D(n, k, α)|bk |}rk−1

k=1

" 
 n+1 #

n
X
1
1
|ak |

k
k
k=1

<

4(1 − α) −


X

{C(n, k, α)|ak | + D(n, k, α)|bk |}

k=1

+

" 
 n+1 #

n
X
1
1
|bk |
+
k
k
k=1
4(1 − α) −


X

≤ 1,

{C(n, k, α)|ak | + D(n, k, α)|bk |}

k=1

where

and

 n
 n+1
1
1
C(n, k, α) =
+ (1 − 2α)
k
k

 n+1
 n
1
1
− (1 − 2α)
.
D(n, k, α) =
k
k
The harmonic univalent functions


X
X
1
1
k
f (z) = z +
yk z k ,
xk z +
ψ(n,
k,
α)
θ(n,
k,
α)
k=2
k=1
100

(6)

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator

where n ∈ N and


X

|xk | +

k=2


X

|yk | = 1, show that the coefficient bound given

k=1

by (5) is sharp. The functions of the form (6) are in H(n, α) because

X

{ψ(n, k, α)|ak | + θ(n, k, α)|bk |} = 1 +

k=1


X
k=2

|xk | +


X

|yk | = 2.

k=1

In the following theorem it is shown that the condition (5) is also necessary
for functions fn = h + g n where h and gn are of the form (4).
Theorem 2.2. Let fn = h + g n be given by (4). Then fn ∈ H − (n, α) if
and only if

X
{ψ(n, k, α)ak + θ(n, k, α)bk } ≤ 2
(7)
k=1

where a1 = 1, 0 ≤ α < 1, n ∈ N.

Proof. Since H − (n, α) ⊂ H(n, α) we only need to prove the ”only if” part
of the theorem. For functions fn of the form (4), we note that the condition

 n
I fn (z)

Re
I n+1 fn (z)
is equivalent to
" 
 n+1 #

n
X
1
1
(1 − α)z −
ak z k
−α
k
k
k=2
Re
∞  n+1
∞  n+1
X
X

1
1

k
2n

ak z + (−1)
bk z k

z −
k
k
k=1
k=2







" 

 n+1 #

n
X

1
1

(−1)2n−1

bk z k 


k
k
k=1
≥ 0.
+






n+1
n
X
X

1
1

k
2n
ak z + (−1)
bk z k 
z−


k
k
k=1
k=2

(8)

The above required condition (8) must hold for all values of z in U . Upon
choosing the values of z on the positive real axis where 0 ≤ z = r < 1, we
101

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator
must have

" 
 n+1 #

n
X
1
1
1−α−
−α
ak rk−1
k
k
k=2
∞  n+1
∞  n+1
X
X
1
1
k−1
ak r
+
bk rk−1
1−
k
k
k=1
k=2
#
"





n
n+1
X
1
1
bk rk−1

k
k
k=1

≥ 0.


∞  n+1

X
X 1 n+1
1
k−1
k−1
ak r
+
bk r
1−
k
k
k=1
k=2

(9)

If the condition (7) does not hold, then the expression in (9) is negative for r
sufficiently close to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient
in (9) is negative. This contradicts the required condition for fn ∈ H − (n, α).
So the proof is complete.
Next we determine the extreme points of the closed convex hull of H − (n, α)
denoted by clcoH − (n, α).
Theorem 2.3. Let fn be given by (4). Then fn ∈ H − (n, α) if and only if
fn (z) =


X

[xk hk (z) + yk gnk (z)],

k=1

where
h(z) = z,

hk (z) = z −

and
gnk (z) = z + (−1)n−1
xk ≥ 0,

yk ≥ 0,

1
zk ,
ψ(n, k, α)

1
zk
θ(n, k, α)
xp = 1 −

(k = 2, 3, . . . )

(k = 1, 2, 3, . . . )


X
k=2

xk −


X

yk .

k=1

In particular, the extreme points of H − (n, α) are {hk } and {gnk } .
Proof. For functions fn of the form (5)
fn (z) =


X
k=1

[xk hk (z) + yk gnk (z)] =


X
k=1

102

(xk + yk )z −


X
k=2

1
xk z k
ψ(n, k, α)

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator

n−1

+(−1)


X
k=1

Then

X

ψ(n, k, α)

k=2



1
xk
ψ(n, k, α)

=


X

xk +

k=2




X

1
yk z k .
θ(n, k, α)

+


X

θ(n, k, α)

k=1



1
yk
θ(n, k, α)



yk = 1 − x1 ≤ 1

k=1

and so fn (z) ∈ clcoH − (n, α).
Conversely, suppose fn (z) ∈ clcoH − (n, α, β). Letting
x1 = 1 −


X

xk −

k=2

xk = ψ(n, k, α)ak ,


X

yk ,

k=1

(k = 2, 3, . . . ) and yk = θ(n, k, α)bk ,

(k = 1, 2, 3, . . . )

we obtain the required representation, since
fn (z) = z −


X

ak z k + (−1)n−1

k=2

=z−


X
k=2

k=1


X

[z − hk (z)]xk −

k=2

= 1−

bk z k


X
1
1
k
n−1
xk z + (−1)
yk z k
ψ(n, k, α)
θ(n,
k,
α)
k=1

=z−
"


X


X

xk −

k=2

[z − gnk (z)]yk

k=1


X
k=1

=


X


X

#

yk z +


X

xk hk (z) +

k=2


X

yk gnk (z)

k=1

[xk hk (z) + yk gnk (z)].

k=1

The following theorem gives the distortion bounds for functions in H − (n, α)
which yields a covering results for this class.
103

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator
Theorem 2.4. Let fn ∈ H − (n, α). Then for |z| = r < 1 we have
|fn (z)| ≤ (1 + b1 )r + {φ(n, k, α) − Ω(n, k, α)b1 }rn+1
and
|fn (z)| ≥ (1 − b1 )r − {φ(n, k, α) − Ω(n, k, α)b1 }rn+1 ,
where

1−α
φ(n, k, α) =  n
 n+1
1
1
−α
2
2

and

1+α
Ω(n, k, α) =  n
 n+1 .
1
1
−α
2
2

Proof. We prove the right hand side inequality for |fn |. The proof for the
left hand inequality can be done using similar arguments. Let fn ∈ H − (n, α).
Taking the absolute value of fn then by Theorem 2.2, we obtain:






X
X


|fn (z)| = z −
ak z k + (−1)n−1
bk z k


k=2

≤r+


X
k=2

≤ r + b1 r +


X

k

ak r +


X

k=1

k

bk r = r + b1 r +

k=1


X

(ak + bk )rk

k=2

X

(ak + bk )r2 = (1 + b1 )r + φ(n, k, α)

k=2

k=2

≤ (1 + b1 )r + φ(n, k, α)rn+2

"


X
k=2

1
(ak + bk )r2
φ(n, k, α)
#

ψ(n, k, α)ak + θ(n, k, α)bk

≤ (1 + b1 )r + {φ(n, k, α) − Ω(n, k, α)b1 }rn+2 .
The following covering result follows from the left hand inequality in Theorem 2.4.
Corollary 2.1. Let fn ∈ H − (n, α), then for |z| = r < 1 we have
{w : |w| < 1 − b1 − [φ(n, k, α) − Ω(n, k, α)b1 ] ⊂ fn (U )}.

104

L.I. Cotˆırl˘a-Harmonic univalent functions defined by an integral operator
References
[1] Y. Avci, E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ.
Marie Crie-Sklodowska, Sect. A., 44(1991).
[2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad.
Sci. Fenn. Ser. A.I. Math., 9(1984), 3-25.
[3]O.P. Ahuja, J.M. Jahangiri, Multivalent harmonic starlike functions,
Ann. Univ. Marie Curie-Sklodowska Sect. A, LV 1(2001), 1-13.
[4] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math.
Anal. Appl., 235(1999).
[5] G.S. S˘al˘agean, Subclass of univalent functions, Lecture Notes in Math.
Springer-Verlag, 1013(1983), 362-372.
Author:
Luminit¸a-Ioana Cotˆırl˘a
Department of Mathematics and Computer Science
University of Babe¸s-Bolyai
400084 Cluj-Napoca, Romania
email: uluminita@math.ubbcluj.ro, luminitacotirla@yahoo.com

105

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52