paper 07-17-2009. 81KB Jun 04 2011 12:03:06 AM

ACTA UNIVERSITATIS APULENSIS

No 17/2009

NEW SUFFICIENT CONDITIONS FOR ANALYTIC AND
UNIVALENT FUNCTIONS

Basem A. Frasin

Abstract. The object of the present paper is to obtain new sufficient conditions on f ′′′ (z) which lead to some subclasses of univalent functions defined
in the open unit disk.
2000 Mathematics Subject Classification: 30C45.
1. Introduction and definitions
Let A denote the class of functions of the form :
f (z) = z + a2 z 2 + a3 z 3 + · · · ,

(1)

which are analytic in the open unit disk U = {z : |z| < 1}. A function
f (z) ∈ A is said to be in the class S ∗ (α), the class of starlike functions of
order α, 0 ≤ α < 1, if and only if

zf ′ (z)
Re
f (z)

!



(z ∈ U).

(2)

Then S ∗ = S ∗ (0) is the class of starlike functions in U. Further, if f (z) ∈ A
satisfies



zf ′ (z) απ

,

(z ∈ U)
(3)
arg
<

f (z)
2
for some 0 < α ≤ 1, then f (z) said to be strongly starlike function of order α


in U, and this class denoted by S (α). Note that S (1) = S ∗ .
Also let K(α), 0 ≤ α < 1, which consists of functions f (z) ∈ A such that
61

B.A. Frasin - New sufficient conditions for analytic and univalent functions

zf ′′ (z)
Re 1 + ′
f (z)


!



(z ∈ U),

(4)

and K = K(0) is the class of convex functions in U. Further, if f (z) ∈ A
satisfies

!

zf ′′ (z) απ

arg 1 +
<
,
(z ∈ U)
(5)


f ′ (z)
2

for some 0 < α ≤ 1, then f (z) said to be strongly convex function of order α in

U, and this class denoted by K(α). Note that K(1) = K and if zf ′ (z) ∈ S (α)
then f (z) ∈ K(α).
Furthermore, a function f (z) ∈ A is said to be in the class R(α) if and
only if
Re{f ′ (z)} > α

(0 ≤ α < 1; z ∈ U),

(6)

Also, let R(α) be the subclasses of A which satisfies
|arg f ′ (z)| <

απ

,
2

(z ∈ U)

(7)

for some 0 < α ≤ 1.
All the above mentioned classes are subclasses of univalent functions in U.
There are many results for sufficient conditions of functions f (z) which
are analytic in U to be starlike, convex, strongly starlike and strongly convex
functions have been given by several researchers. ([1], [2], [3], [4], [5], [6], [7],
[8], [9]). In this paper we will study λ such that the condition|f ′′′ (z)| ≤ λ,
z ∈ U, implies that f (z) belongs to one of the classes defined above.
In order to prove our main result, we shall need the following lemmas
obtained by Tuneski ([9]).
Lemma 1. If f (z) ∈ A satisfies
|f ′′ (z)| ≤

2(1 − α)

1−α

(z ∈ U; 0 ≤ α < 1)

(8)

then f (z) ∈ S ∗ (α).

Lemma 2. If f (z) ∈ A satisfies
|f ′′ (z)| ≤

2 sin(απ/2)
1 + sin(απ/2)
62

(z ∈ U; 0 < α ≤ 1)

(9)

B.A. Frasin - New sufficient conditions for analytic and univalent functions



then f (z) ∈ S (α).

Lemma 3. If f (z) ∈ A satisfies
|f ′′ (z)| ≤

1−α
2−α

(z ∈ U; 0 ≤ α < 1)

(10)

(z ∈ U; 0 ≤ α < 1)

(11)

(z ∈ U; 0 < α ≤ 1)


(12)

then f (z) ∈ K(α).

Lemma 4. If f (z) ∈ A satisfies
|f ′′ (z)| ≤ 1 − α

then f (z) ∈ R(α).

Lemma 5. If f (z) ∈ A satisfies
|f ′′ (z)| ≤ sin

απ
2

then f (z) ∈ R(α).

As a consequence of Theorem 3 in [10], we obtain the following lemma:
Lemma 6. If f (z) ∈ A, satisfies
q


|f ′ (z) + αzf ′′ (z) − 1| < (1 + α) (α − 1)/(α2 + 3α)

(z ∈ U)

(13)

where α > 1, then f (z) ∈ K(1/2).
2.Main Result
Theorem 1. If f (z) = z + a2 z 2 + a3 z 3 + · · · ∈ A satisfies
|f ′′′ (z)| ≤

2(1 − α)
− 2 |a2 |
1−α

then f (z) ∈ S ∗ (α).

Proof. Noting that


63

(z ∈ U; 0 ≤ α < 1)

(14)

B.A. Frasin - New sufficient conditions for analytic and univalent functions

|f ′′ (z)| − 2 |a2 | ≤ |f ′′ (z) − 2a2 |
=


z

Z


f ′′′ (σ)dσ





0



Z|z|
0

and thus,



′′′ iθ
f (te ) dt

Z|z|

′′′ iθ
f (te ) dt + 2 |a2 |
|f (z)| ≤
′′

0



! Z|z|
2(1 − α)
dt + 2 |a2 |
− 2 |a2 |
1−α
0

!

2(1 − α)
− 2 |a2 | |z| + 2 |a2 |
1−α
2(1 − α)
.

1−α



Then by Lemma 1, we have f (z) ∈ S ∗ (α).

Corollary 1. Let f (z) ∈ A with f ′′ (0) = 0 . Then
(i) |f ′′′ (z)| ≤ 2 implies f (z) ∈ S ∗ ;
(ii) |f ′′′ (z)| ≤ 4/5 implies f (z) ∈ S ∗ (1/3);
(iii) |f ′′′ (z)| ≤ 2/3 implies f (z) ∈ S ∗ (1/2); and
(iv) |f ′′′ (z)| ≤ 1/2 implies f (z) ∈ S ∗ (2/3).

Applying the same method as in the proof of Theorem 1 and using Lemmas
2-5 instead of Lemma 1, we obtain the following theorems, respectively.
Theorem 2. If f (z) = z + a2 z 2 + a3 z 3 + · · · ∈ A satisfies
|f ′′′ (z)| ≤

2 sin(απ/2)
− 2 |a2 |
1 + sin(απ/2)



then f (z) ∈ S (α).
64

(z ∈ U; 0 < α ≤ 1)

(15)

B.A. Frasin - New sufficient conditions for analytic and univalent functions
Corollary 2. Let f (z) ∈ A with f ′′ (0) = 0 . Then
(i) |f ′′′ (z)| ≤ 1 implies f (z) ∈ S ∗ ;

(ii) |f ′′′ (z)| ≤ 2/3√implies f (z) ∈ S (1/3);.

(iii) |f ′′′ (z)| ≤ 2( √2 − 1) = 0.8284 . . . implies f (z) ∈ S (1/2); and

(iii) |f ′′′ (z)| ≤ 2(2 3 − 3) = 0.9282 . . . implies f (z) ∈ S (2/3).
Theorem 3. If f (z) = z + a2 z 2 + a3 z 3 + · · · ∈ A satisfies
|f ′′′ (z)| ≤

1−α
− 2 |a2 |
2−α

(z ∈ U; 0 ≤ α < 1)

(16)

then f (z) ∈ K(α).

Corollary 3. Let f (z) ∈ A with f ′′ (0) = 0 . Then
(i) |f ′′′ (z)| ≤ 1/2 implies f (z) ∈ K;.
(ii) |f ′′′ (z)| ≤ 2/5 implies f (z) ∈ K(1/3);.
(iii) |f ′′′ (z)| ≤ 1/3 implies f (z) ∈ K(1/2); and
(iv) |f ′′′ (z)| ≤ 1/4 implies f (z) ∈ K(2/3).

Theorem 4. If f (z) = z + a2 z 2 + a3 z 3 + · · · ∈ A satisfies
|f ′′′ (z)| ≤ 1 − α − 2 |a2 |

(z ∈ U; 0 ≤ α < 1)

(17)

then f (z) ∈ R(α).

Corollary 4. Let f (z) ∈ A with f ′′ (0) = 0 . Then
(i) |f ′′′ (z)| ≤ 1 implies Re f (z) > 0;
(i) |f ′′′ (z)| ≤ 2/3 implies f (z) ∈ R(1/3);.
(ii) |f ′′′ (z)| ≤ 1/2 implies f (z) ∈ R(1/2); and
(iii) |f ′′′ (z)| ≤ 1/3 implies f (z) ∈ R(2/3).

Theorem 5. If f (z) = z + a2 z 2 + a3 z 3 + · · · ∈ A satisfies
|f ′′′ (z)| ≤ sin

απ
− 2 |a2 |
2

then f (z) ∈ R(α).

(z ∈ U; 0 < α ≤ 1)

Corollary 5. Let f (z) ∈ A with f ′′ (0) = 0 . Then
(i) |f ′′′ (z)| ≤ 1/2
√ implies f (z) ∈ R(1/3);
′′′
(ii) |f (z)| ≤ √2/2 = 0.7071 . . . implies f (z) ∈ R(1/2); and
(iii) |f ′′′ (z)| ≤ 3/2 = 0.8660 . . . implies f (z) ∈ R(2/3).
Finally, we prove

65

(18)

B.A. Frasin - New sufficient conditions for analytic and univalent functions
Theorem 6. If f (z) ∈ A, satisfies
|f ′′ (z)| <

q

(α − 1)/(α2 + 3α)

(z ∈ U)

(19)

where α > 1, then f (z) ∈ K(1/2).
Proof. It follows that

|f ′ (z) + αzf ′′ (z) − 1| ≤ |f ′ (z) − 1| + α |zf ′′ (z)|

z

Z



≤ f ′′ (t)dt + α |zf ′′ (z)|


0



Z|z|
0

q

|f ′′ (t)dt| + α (α − 1)/(α2 + 3α) |z|
q

≤ (1 + α) (α − 1)/(α2 + 3α) |z|
q

< (1 + α) (α − 1)/(α2 + 3α),
Using Lemma 6, we have f (z) ∈ K(1/2).
References
[1] B.A. Frasin, New Sufficient Conditions for Strongly Starlikeness and
Strongly Convex Functions, Kyungpook Math. J. 46(2006), 131-137.
[2] P.T. Mocanu, Some starlikeness conditions for analytic functions, Rev.
Roumaine Math. Pures. Appl. 33 (1988), 117-124.
[3] P.T. Mocanu, Two simple conditions for starlikeness, Mathematica (Cluj).
34 (57) (1992), 175-181.
[4] P.T. Mocanu, Some simple criteria for for starlikeness and convexity,
Libertas Mathematica, 13 (1993), 27-40.
[5] M. Nunokawa, On the order of strongly starlikeness of strongly convex
functions, Proc. Japan. Acad., Sec.A 68 (1993), 234-237.
[6] M. Nunokawa, S. Owa, Y. Polatoğlu, M. Cağlar and E. Yavuz, Some sufficient conditions for starlikeness and convexity, International Short Joint Research Workshop Study on Geometric Univalent Function Theory, May 16-18,
2007, Research Institute for Mathematical Sciences, Kyoto University (RIMS)
at Kyoto, Japan.
66

B.A. Frasin - New sufficient conditions for analytic and univalent functions
[7] M. Obradovič, Simple sufficients conditions for starlikeness, Matematicki Vesnik. 49 (1997), 241-244.
[8] G. Oros, A condition for convexity, Gen. Math.Vol. 8, No. 3-4
(2000),15-21.
[9] S. N. Tuneski, On simple sufficient conditions for univalence, Mathematica Bohemica, Vol. 126, No. 1, (2001), 229-236.
[10] S. Ponnusamy and S. Rajasekaran, New sufficient conditions for starlike and univalent functions, Soochow J. Math. 21 (2) (1995), 193-201.
Author:
Basem A. Frasin
Department of Mathematics
Al al-Bayt University
P.O. Box: 130095
Mafraq, Jordan
email:[email protected]

67

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52