LISTRIK untuk SMP
KEGIATAN PEMBELAJARAN 2: GETARAN DAN GELOMBANG
KELOMPOK KOMPETENSI H
Modul Guru Pembelajar Mata Pelajaran IPA SMP
79
4. Penjalaran Gelombang
Pada gelombang mekanik, partikel-partikel medium yang dilalui melakukan getaran harmonik sederhana sehingga gerak gelombang selalu bisa dinyatakan
dengan fungsi sinus atau cosinus, seperti pada gambar 2.15.
Arah X menyatakan arah penjalaran gelombang sedangkan Y menyatakan besarnya jarak partikel medium dari titik setimbangnya.
Pada gelombang transversal partikel bergetar sepanjang Y
1
Y
1
’ tegak lurus arah penjalaran X, dan pada gelombang longitudinal getarannya sepanjang Y
2
Y
2
’ yang sama dengan arah penjalaran gelombang X.
Gambar 2.15 Grafik fungsi sinus dan cosinus gerak gelombang
Y
X Y
X
Y
1
X
Y
1
Y
2
Y
2
’
Gambar 2.16 Arah getar dan arah rambat gelombang transversal dan gelombang longitudinal
PPPPTK IPA
Direktorat Jenderal Guru dan Tenaga Kependidikan - Kemdikbud
KEGIATAN PEMBELAJARAN 2: GETARAN DAN GELOMBANG
KELOMPOK KOMPETENSI H
80
Suatu gelombang tansversal mejalar sepanjang sumbu x dan pergeseran partikelnya dinyatakan dengan y. Dalam perambatan gelombang yang menjalar
adalah usikannya atau energinya. Bentuk gelombang tergantung dari sumber gelombangnya. Jika usikannya
berbentuk pulsa seperti pada gambar 3.17a, yang ujungnya dinaikkan ke atas sekali, maka yang menjalar adalah berbentuk pulsa gelombang, sedangkan
kalau sumber gelombangnya dalah sistem pegas-massa yang digetarkan, usikannya berbentuk fungsi harmonik, maka gelombang yang menjalar adalah
bentuk fungsi sinus atau cosinus, seperti pada gambar 3.17b. Kecepatan jalar gelombang tidak bergantung dari bentuk usikan tetapi
tergantung dari medium, yaitu tergantung dari interaksi atau elastisitas antar partikel-partikel dan kelembaman atau inersia mediumnya.
Persamaan penjalaran gelombang untuk sebuah titik yang terletak pada x = 0 dapat dinyatakan sebagai berikut .
Y = A sin t
sedangkan pergeseran partikel lain yang terletak disebelah kanan partikel tersebut terlambat sebesar
, dengan persamaan getar sebagai berikut. Y = A sin
t -
Gambar 2.17 Bentuk-bentuk gelombang berdasarkan sumber getarnya a gelombang pulsa, b gelombang cosinus
I A
-A y
A
½ T
t
T 2 T
32 T 52 T
LISTRIK untuk SMP
KEGIATAN PEMBELAJARAN 2: GETARAN DAN GELOMBANG
KELOMPOK KOMPETENSI H
Modul Guru Pembelajar Mata Pelajaran IPA SMP
81
Besar keterlambatan
tergantung dari jarak x, dinamakan sudut fasa dan
= kx dengan k adalah bilangan gelombang. Jadi untuk partikel yang terletak
sejauh x di sebelah kanan titik asal O akan mempunyai pergeseran sebagai berikut.
Y = A sin t - kx
Persamaan di atas menggambarkan gelombang sinus yang menjalar ke kanan. Jika gelombang sinus menjalar ke kiri, kearah sumbu x negatif
persamaannya menjadi: Y = A sin
t + kx Partikel sejauh satu panjang gelombang dari titik asal akan bergetar sefasa
dengan titik asal, jadi beda fasanya = 2, sehingga harga k =
2
dan karena
= 2 f =
T 2
, maka persamaan gelombang yang menjalar tersebut dapat dinyatakan sebagai berikut.
Y = A sin 2
x T
t
Untuk harga t tertentu persamaan di atas menyatakan pergeseran y tiap partikel dari titik setimbangnya sebagi fungsi x pada waktu tersebut. Untuk
suatu harga x, untuk sebuah partikel, persamaan di atas menggambarkan harga y pada setiap waktu t. Dengan kata lain pergeseran y dari suatu
partikel mediun yang dilalui gelombang tergantung dari koordinat dan waktunya, atau y fungsi variabel x dan t.
PPPPTK IPA
Direktorat Jenderal Guru dan Tenaga Kependidikan - Kemdikbud
KEGIATAN PEMBELAJARAN 2: GETARAN DAN GELOMBANG
KELOMPOK KOMPETENSI H
82
Persaman pergeseran gelombang dapat juga dituliskan sebagai berikut. Y = A sin 2
x -
t v
Y = A sin
v x
- t
Y = A sin k vt - x
5. Sifat-Sifat Gelombang