Diff. Eq. 194 1 2003, 140–165. Directory UMM :Journals:Journal_of_mathematics:OTHER:

Perturbative methods 131 [5] B IAGIONI H.A., C ADEDDU L. AND G RAMCHEV T., Parabolic equations with conservative nonlinear term and singular initial data, Proceedings of the Second World Congress of Nonlinear Analysts, Part 4 Athens, 1996, Nonlinear Anal. 30 4 1997, 2489–2496. [6] B IAGIONI H.A. AND G RAMCHEV T., Evolution PDE with elliptic dissipative terms: critical index for singular initial data, self-similar solutions and analytic regularity, C. R. Acad. Sci. Paris S´er. I Math. 327 1 1998, 41–46. [7] B IAGIONI H.A. AND G RAMCHEV T., Multidimensional Kuramoto-Sivashinsky type equations: singular initial data and analytic regularity, Proceedings of the Fifth Workshop on Partial Differential Equations, Rio de Janeiro, 1997, Matem- atica Contemporanea 15 1998, 21–42. [8] B IAGIONI H.A. AND G RAMCHEV T., Fractional derivative estimates in Gevrey spaces, global regularity and decay for solutions to semilinear equations in R n ,

J. Diff. Eq. 194 1 2003, 140–165.

[9] B ILER P. AND W OYCZY ´ NSKI W., Nonlocal quadratic evolution problems. Evo- lution equations: existence, regularity and singularities, Banach Center Publ. 52 2000, 11–24. [10] B ONA J. AND C HEN H., Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations, Adv. Diff. Eq. 3 1998, 51–84. [11] B ONA J. AND L I Y., Decay and analyticity of solitary waves, J. Math. Pures Appl. 76 1997, 377–430. [12] B OURDAUD G., R EISSIG M. AND S ICKEL W., Hyperbolic equations, function spaces with exponential weights and Nemytskij operators, preprint 2001. [13] B OUTET DE M ONVEL L. AND K R ´ EE P., Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier 17 1 1967, 295–323. [14] B REZIS H. AND F RIEDMAN A., Nonlinear parabolic equations involving mea- sures as initial conditions, J. Math. Pures Appl. 62 1983, 73–97. [15] B REZIS H. AND C AZENAVE T., A nonlinear heat equation with singular initial data, J. Anal. Math. 68 1996, 277–304. [16] C ANNONE M. AND P LANCHON F., Self-similar solutions for Navier-Stokes equations in R 3 , Comm. Partial Diff. Eq. 21 1996, 179–193. [17] C APPIELLO M., Pseudodifferential parametrices of infinite order for SG- hyperbolic problems, Rend. Sem. Univ. e Polit. Torino, to appear. [18] C APIELLO M. AND R ODINO L., SG-pseudo-differential operators and Gelfand- Shilov spaces, preprint 2003. 132 T. Gramchev [19] C OIFFMAN R. AND M EYER Y., Au del `a des op´erateurs pseudo-diff´erentiels, Ast´erisque 57, Soci´et´e Math´ematique de France, Paris 1978. [20] D E D ONNO G. AND O LIARO A., Local solvability and hypoellipticity for semi- linear anisotropic partial differential equations, Trans. Amer. Math. Soc. 355 2003, 3405–3432 [21] D IX D., Nonuniqueness and uniqueness in the initial-value problem for Burgers’ equation, SIAM J. Math. Anal. 27 3 1996, 708–724. [22] F ERRARI A. AND T ITI E., Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Diff. Eq. 23 1998, 1–16. [23] F OIAS C. AND T EMAM R., Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 1989, 359–369. [24] G EL ’ FAND I.M. AND S HILOV G.E., Generalizied functions II, Academic Press, New York 1968. [25] G IDAS B., N I W.M. AND N IRENBERG L., Symmetry of positive solutions of nonlinear elliptic equations in R n , Mathematical Analysis and applications, Part

A, Adv. in Math. Suppl. Stud. 7a, Academic Press, New York, London 1981, 369–402.