PENERAPAN IMPROVED ZERO POINT METHOD IZP

PENERAPAN IMPROVED ZERO POINT METHOD (IZPM)
PADA MASALAH TRANSPORTASI
(Studi Kasus UD Tunas Rimba Tulungagung)
Eko Alan Kusumayadi SPL, Sobri Abusini
Jurusan Matematika, F.MIPA, Universitas Brawijaya, Malang, Indonesia
Email: [email protected]
Abstrak. Metode transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari beberapa sumber ke
beberapa tujuan dengan meminimumkan total biaya distribusi. Hasil akhir dari metode transportasi adalah suatu solusi
optimal dari fungsi tujuan dengan batas kendala yang ada. Tujuan dari penulisan artikel ini adalah untuk menentukan solusi
optimal masalah transportasi dengan Improved Zero Point Method (IZPM). Metode ini merupakan sebuah metode alternatif
selain metode-metode yang sudah dikenal. Dalam artikel ini hasil akhir dari perhitungan IZPM akan dibandingkan dengan
hasil akhir dari metode Stepping Stone. Hasil perhitungan dari IZPM pada masalah transportasi di UD Tunas Rimba yaitu
total biaya distribusi sebesar Rp 46.950.000,00 dan hasil perhitungan dari metode Stepping Stone sebesar Rp 46.950.000,00.
Dari kedua metode tersebut diperoleh hasil optimal yang sama.
Ka ta Kunci: Masalah Transportasi, Improved Zero Point Method, Metode Biaya Terkecil, Metode Stepping Stone.

1. PENDAHULUAN
Salah satu aspek yang dapat mempengaruhi keberlanjutan suatu perusahaan adalah masalah
transportasi. Masalah transportasi adalah mengenai pendistribusian beberapa komuditas dari beberapa
pusat persediaan kebeberapa pusat penerima atau tujuan dengan meminimumkan biaya total distribusi.
Menurut Siswanto (2007), terdapat metode yang digunakan untuk mendapatkan solusi awal

yaitu, Least Cost Method, North West Corner Method, Vogel’s Approximation Method (VAM) dan
Russel’s Approximation Method (RAM). Keempat metode tersebut berfungsi untuk menentukan
alokasi distribusi awal dari sumber ke tujuan. Solusi awal ini belum dipastikan optimal, sehingga
untuk mengetahui apakah biaya distribusi total telah optimal dilakukan uji optimalitas dengan
menggunakan metode Stepping Stone atau metode Modified Distribution (MODI).
Seiring berkembangnya waktu banyak metode-metode transportasi yang diusulkan para peneliti
untuk menghasilkan solusi yang optimal. Salah satu metode tersebut yaitu Zero Point Method (ZPM)
(Pandian dan Natarajan, 2010). Namun menurut Samuel (2012) pada kasus tertentu Zero Point Method
ini tidak dapat menyelesaikan masalah transportasi (tidak ada solusi), sehingga metode ini kemudian
dikembangkan menjadi Improved Zero Point Method (IZPM) agar dapat menghasilkan solusi yang
optimal. Tujuan dari penelitian ini adalah menerapkan Improved Zero Point Method (IZPM) pada
masalah transportasi barang di UD Tunas Rimba dan membandingkan hasil perhitungan total biaya
distribusi antara Improved Zero Point Method dengan metode Stepping Stone.
2. METODOLOGI
Guna mencapai tujuan dari artikel ini dilakukan tahapan analisis data sebagai berikut: Pertama
membuat tabel transportasi dari data yang diperoleh kemudian mencari solusi optimal menggunakan
Improved Zero Point Method. Setelah itu mencari solusi awal dari data yang diperoleh dengan
menggunakan metode Biaya Terkecil dan uji optimalitas dari solusi awal yang didapat dengan
menggunakan metode Stepping Stone. Selanjutnya membandingkan hasil perhitungan Improved Zero
Point Method dengan metode Stepping Stone. Pada artikel ini digunakan batasan masalah berupa

faktor alam yang dapat mengakibatkan pendistribusian terhambat diabaikan dan pengiriman langsung
dari tempat asal ke tempat tujuan. Menurut Samuel (2012), langkah-langkah Improved Zero Point
Method adalah sebagai berikut.
1. Membuat tabel transportasi dari masalah trasnportasi yang telah diberikan dan menyeimbangkan
apabila belum seimbang.
2. Mengurangi setiap elemen dalam baris dengan elemen terkecil pada baris tersebut dan dari tabel
pengurangan baris tersebut, setiap elemen dalam kolom dikurangi dengan elemen terkecil pada
kolom tersebut.
3. Mengecek apakah setiap kolom permintaan kurang dari atau sama dengan jumlah baris-baris
persediaan yang menyuplai kolom permintaan tersebut, dimana baris yang menyuplai adalah

4.

5.

6.
7.

8.
9.


baris pada kolom tersebut yang biaya tereduksinya nol. Mengecek apakah setiap baris persediaan
kurang dari atau sama dengan jumlah kolom-kolom permintaan yang meminta persediaan,
dimana kolom yang meminta persediaan adalah kolom pada baris tersebut yang biaya
tereduksinya nol. Apabila syarat tersebut terpenuhi, langsung menuju langkah 6.
Menutup semua elemen nol dengan garis mendatar dan tegak seminimal mungkin sehingga
beberapa elemen dari kolom-kolom atau baris-baris yang tidak memenuhi syarat pada langkah 3
tidak tertutup.
Membentuk tabel transportasi perbaikan dengan cara sebagai berikut.
a. Menemukan nilai biaya tereduksi yang terkecil pada tabel yang tidak tertutup garis.
b. Mengurangkan nilai tersebut ke semua elemen nilai yang tidak tertutup garis dan
menambahkan nilai tersebut ke semua elemen nilai yang tertutup oleh dua garis.
Memilih sel pada tabel transportasi hasil langkah-langkah di atas yang memiliki biaya tereduksi
terbesar dan dinamakan
. Jika terdapat lebih dari satu sel, maka dipilih salah satu.
Memilih sel pada baris atau kolom pada tabel transportasi yang memiliki biaya tereduksi nol
dan mengisikan semaksimum mungkin pada sel tersebut sehingga memenuhi persediaan dan
permintaan.
Membentuk kembali tabel transportasi yang telah diperbaiki.
Mengulangi langkah 6 sampai langkah 8 sampai baris persediaan dan kolom permintaan

terpenuhi.

3. HASIL DAN PEMBAHASAN
3.1 Model Dasar Transportasi
Suatu masalah transportasi dapat dimodelkan secara matematika dengan membentuk fungsi
tujuan. Fungsi tujuan tersebut menunjukkan biaya transportasi total dari sumber i ke tujuan j, model
program linear yang mewakili masalah transportasi secara umum menurut Winston (1994) adalah
Fungsi tujuan : Minimumkan
∑∑
dengan batasan:




Keterangan:
: jumlah produk yang diangkut dari titik asal i ke titik tujuan j
: biaya angkut per unit dari titik asal i ke titik tujuan j
: jumlah hasil produksi yang tersedia dipusat persediaan i
: jumlah hasil produksi yang diminta ditempat tujuan j.
3.2 Studi Kasus

3.2.1 Penerapan Improved Zero Point Method Pada Masalah Transportasi UD Tunas Rimba

Berdasarkan hasil penelitian di UD Tunas Rimba Tulungagung, didapatkan tabel transportasi
sebagai berikut:

273

Tabel 3.1 Tabel transportasi UD Tunas Rimba bulan Februari 2013
ke

b1

dari

b3

b4

b5


300

200

240

150

350

260

130

200

100

320


270

150

180

130

340

0

0

0

0

0


90

260

50

70

100

a1
a2
a3
a4
permintaan

b2

persediaan
100

150
73
247
570

Keterangan : jumlah persediaan dan permintaan dalam satuan ton dan biaya distribusi barang dalam
satuan Rupiah per kilogram.
Berdasarkan langkah-langkah pada Improved Zero Point Method didapatkan tabel alokasi
distribusi sebagai berikut.
Tabel 3.2 Hasil akhir alokasi Improved Zero Point Method
ke

b1

dari

b2

300


a1

b3

200

240

a2

270

a3

0

a4

90


permintaan

90

130
150
150
73
0
7

260

b5

150

350

200

100

320

180

130

340

0

50

30
260

b4

persediaan
100

70

50

150
73

0

247

100

50

70

100

570

Pada Tabel 3.2 dapat dihitung total biaya distribusi dengan menggunakan persamaan persamaan (1)
sebagai berikut.
=300(0)+200(30)+240(0)+150(70)+350(0)+260(27)+130(150)+200(0)+100(0)+320(0)+270(0)
+150(73)+180(0)+130(0)+340(0)+0(90)+0(7)+0(50)+50(0)+0(100)
=46.950
Dari perhitungan didapatkan total biaya distribusi pada masalah transportasi di UD Tunas
Rimba sebesar Rp 46.950,00 per satuan kilogram, sehingga total biaya distribusi per satuan ton adalah
Rp 46.950.000,00.
3.2.2 Solusi Awal Menggunakan Metode Biaya Terkecil

Berdasarkan langkah-langkah pada metode Biaya Terkecil didapatkan tabel alokasi distribusi
sebagai berikut:
Tabel 3.3 Solusi awal dengan metode Biaya Terkecil
ke

b1

dari

300

a1

260

a2

270

a3
a4
permintaan

0
90

90

b2
200
100
130
80
150
73
0
7

260

b3

b4

b5

240

150

350

200

100

320

180

130

340

0

50

70

50

50

0
100

70

100

persediaan
100
150
73
247
570

Pada Tabel 3.3 dapat dihitung total biaya distribusi solusi awal dengan menggunakan persamaan
persamaan (1) sebagai berikut.
=300(0)+200(100)+240(0)+150(0)+350(0)+260(0)+130(80)+200(0)+100(70)+320(0)+270(0)
+150(73)+180(0)+130(0)+340(0)+0(90)+0(7)+0(50)+50(0)+0(100)
=47.350
Dari perhitungan di atas didapatkan solusi awal per satuan ton sebesar Rp 47.350.000,00.

274

3.2.3 Uji Optimalitas Menggunakan Metode Stepping Stone

Metode Stepping Stone diawali dengan tes degenerasi yaitu menghitung banyaknya sel basis
pada tabel transportasi metode Biaya Terkecil. Tes degenerasi dilakukan dengan menguji apakah
sama dengan jumlah sel basis. Pada Tabel 3.3 diketahui =4 dan =5 maka 4+5-1=8.
Diketahui bahwa jumlah sel basis sama dengan aturan
maka dapat dilakukan uji
optimalitas menggunakan metode Stepping Stone.
Selanjutnya mencari nilai
untuk setiap sel non basis, maka didapatkan hasil sebagai
berikut.
= (1,1) – (1,2) + (4,2) – (4,1)
= (1,3) – (4,3) + (4,2) – (1,2)
= 300 – 200 + 0 – 0 = 100
= 240 – 0 + 0 – 200 = 40
= (1,4) – (2,4) + (2,2) – (1,2)
= (1,5) – (4,5) + (4,2) – (1,2)
= 150 – 100 + 130 – 200 = -20
= 350 – 0 + 0 – 200 = 150
= (2,1) – (2,2) + (4,2) – (4,1)
= (2,3) – (4,3) + (4,2) – (2,2)
= 260 – 130 + 0 – 0 = 130
= 200 – 0 + 0 – 130 = 70
= (2,5) – (4,5) + (4,2) – (2,2)
= (3,1) – (3,2) + (4,2) – (4,1)
= 320 – 0 + 0 – 130 = 190
= 270 – 150 + 0 – 0 = 120
= (3,3) – (4,3) + (4,2) – (3,2)
= (3,4) – (3,2) + (2,2) – (2,4)
= 180 – 0+ 0 – 150 = 30
= 180 – 0+ 0 – 150 = 30
= (3,5) – (4,5) + (4,2) – (3,2)
= (4,4) – (4,2) + (2,2) – (2,4)
= 340 – 0 + 0 – 150 = 190
= 0 – 0 + 130 – 100 = 30
Diketahui bahwa nilai dari
bernilai kurang dari nol, maka dilakukan perubahan
alokasi mengikuti aturan jalur tertutup. Proses tersebut dilakukan dengan cara yang sama hingga
didapatkan nilai
0 dan diperoleh total biaya per satuan ton sebesar Rp 46.950.000,00.
4. KESIMPULAN
Penerapan Improved Zero Point Method pada masalah transportasi UD Tunas Rimba
menghasilkan total biaya distribusi sebesar Rp 46.950.000,00. Didapatkan hasil solusi awal dengan
menggunakan metode Biaya Terkecil sebesar Rp 47.350.000,00 dan solusi optimal dari solusi awal
yang diperoleh adalah Rp 46.350.000,00. Dari kedua hasil tersebut diketahui bahwa hasil perhitungan
menggunakan Improved Zero Point Method dengan menggunakan metode Stepping Stone adalah
sama dan menghasilkan solusi optimal. Improved Zero Point Method mudah diterapkan pada masalah
transportasi dan memberikan hasil optimal tanpa menggunakan solusi awal. Namun kelemahan dari
Improved Zero Point Method ini adalah pada langkah menutup semua elemen nolnya harus tepat, jika
tidak dapat membuat perhitungan semakin rumit. Selain menghasilkan solusi optimal kelemahan dari
metode Stepping Stone terletak pada mendapatkan nilai
melalui proses yang panjang karena
dipengaruhi banyaknya sumber dan tujuan.
5. UCAPAN TERIMA KASIH
Penulis berterima kasih kepada Sobri Abusini, Kwardiniya A., dan Endang Wahyu H. atas
segala bimbingan, saran, dan kesabaran yang telah diberikan selama penulisan artikel ini. Selain itu,
penulis sangat berterima kasih kepada Suparlan (Bapak) dan Wiwik Lestari (Ibu) dan seluruh keluarga
besar penulis, serta teman-teman semua atas segala doa, bantuan, dan motivasi yang tidak pernah habis
diberikan.
DAFTAR PUSTAKA
Pandian, P. dan Natarajan, G., (2010), A new algorithm for finding a fuzzy optimal solution for fuzzy
transportation problems, Applied Mathematical Sciences, 4, hal. 79-90.
Samuel, A.E., (2012), Improved Zero Point Method (IZPM) for the Transportation Problems, Applied
Mathematical Sciences, 6(109), hal. 5421-5426.
Siswanto, (2007), Operation Research, Erlangga, Yogyakarta.
Winston, W.T., (1994), Operations research: Applications and Algorithms. Third Edition, Wadsworth
Inc. California.
275