Formulasi Gel Pengharum Ruangan Menggunakan Karagenan dan Natrium Alginat dengan Minyak Nilam sebagai Fiksatif
LAMPIRAN
Lampiran 1. Bagan alir pembuatan basis gel
Aquades
Dipanaskan hingga suhu 75°C
Karagenan,
Aduk hingga homogen
Natrium
Turunkan suhu hingga 650 C
Aduk hingga homogen
Propilen glikol
Tuangkan dalam cetakan
Biarkan pada suhu ruangan hingga
Bentuk sediaan gel
43
Universitas Sumatera Utara
Lampiran 2. Bagan alir pembuatan gel pengharum
Aquades
Aquades
Dipanaskan hingga suhu 75°C
Karagenan,
Aduk hingga homogen
Natrium
Turunkan suhu hingga 650 C
Aduk hingga homogen
Propilen glikol
Minyak lemon,
i
Aduk hingga homogen
k il
Tuangkan dalam cetakan
Biarkan pada suhu ruangan hingga
Gel pengharum ruangan
44
Universitas Sumatera Utara
Lampiran 3.Gambar minyak lemon
Lampiran 4.Gambar minyak nilam
45
Universitas Sumatera Utara
Lampiran 5.Contoh lembar penilaian uji kesukaan (hedonic test)
Lembar Penilaian Uji Kesukaan (Hedonic Test)
Nama
:
Umur
:
Instruksi
: Berikan pendapat anda tentang aroma wangi sedian gel
pengharum ruangan yang di uji, kemudian berilah tanda centang () pada
salah satu kolom (SS/S/CS/KS/TS) yang tersedia
Penilaian
Sediaan
SS
S
CS
KS
TS
1%
1,5%
Lampiran
2% 6.Tabel penguapan zat cair pertiga hari selama 30 hari (gram)
2,5%
Keterangan :
Nilai 5 = Sangat Suka (SS)
Nilai 4 = Suka (S)
Nilai 3 = Cukup Suka (CS)
Nilai 2 = Kurang Suka (KS)
Nilai 1 = Tidak Suka (TS)
46
Universitas Sumatera Utara
Lampiran 6.Rumus perhitungan nilai uji kesukaan (hedonic test)
Untuk menghitung nilai kesukaan rata-rata dari setiap panelis digunakan
rumus sebagai berikut:
∑ = Xi
X =
n
•
i
n
∑ (Xi − X )
=
2
n
•
S2
•
S = S2
•
P ( X − (1,96.S / n ) ≤ µ ≤ ( X + (1,96.S / n ) ≅ 95%
i
n
Keterangan :
n
S2
1,96
X
Xi
S
P
µ
: Banyak panelis
: Keseragaman nilai kesukaan
: Koefisien standar deviasi pada taraf 95%
: Nilai kesukaan rata-rata
: Nilai dari panelis ke i, dimana i = 1,2,3,…,n
: Simpangan baku nilai kesukaan
: Tingkat kepercayaan
: Rentang nilai
47
Universitas Sumatera Utara
Lampiran 7.Tabel hasil uji kesukaan (hedonic test)
Formula
Panelis
N1
N2
N3
N4
1
5
5
5
5
2
5
4
3
3
3
4
4
4
4
4
5
4
5
5
5
5
5
4
5
6
4
4
4
4
7
5
5
4
3
8
3
4
3
3
9
4
4
4
4
10
5
5
5
5
11
3
3
4
5
12
5
5
4
3
13
5
5
4
4
14
5
4
5
5
15
4
4
4
3
16
5
5
4
3
17
4
4
4
3
18
5
5
5
5
19
4
4
4
3
20
5
4
4
4
21
5
4
4
4
22
5
5
5
5
23
4
4
4
3
24
5
5
5
4
25
5
4
4
3
Jumlah
114
109
105
98
48
Universitas Sumatera Utara
Lampiran 8.Perhitungan hasil uji kesukaan (hedonic test)
Formula N1
∑ = Xi
X =
n
•
i
n
=
5 + 5 + 4 + 5 + .... + 5
25
=
114
= 4,56
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,56) + (5 − 4,56) + (4 − 4,56) + (5 − 4,56 ) + .... + (5 − 4,56 )
=
25
=
10,05
25
= 0,402
•
S = S2
S = 0,402
S = 0,63
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (4,56 − (1,96.0,63 / 25 ) ≤ µ ≤ ( 4,56 − (1.96.0,63 / 25)
P (4,56 − 0,24) ≤ µ ≤ (4,56 + 0,24)
P (4,80 ≤ µ ≤ 4,31)
49
Universitas Sumatera Utara
Lampiran 8. (Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 4 + 4 + .... + 4
25
=
109
= 4,36
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,36) + (4 − 4,36 ) + (4 − 4,36 ) + (4 − 4,36 ) + .... + (4 − 4,36 )
=
25
=
7,74
25
= 0,309
•
S = S2
S = 0,309
S = 0,55
•
P ( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n
P (4,36 − (1,96.0,55 / 25 ) ≤ µ ≤ (4,36 + (1.96.0,55 / 25 )
P(4,36 − 0,21) ≤ µ ≤ (4,36 + 0,21)
P(4,15 ≤ µ ≤ 4,57)
50
Universitas Sumatera Utara
Lampiran 8. (Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
5 + 3 + 4 + 5 + .... + 4
25
=
105
= 4,2
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,2 ) + (3 − 4,2 ) + (4 − 4,2 ) + (5 − 4,2 ) + .... + (4 − 4,2 )
=
25
=
8
25
= 0,32
•
S = S2
S = 0,32
S = 0,56
•
P ( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n
P (4,2 − (1,96.0,56 / 25 ) ≤ µ ≤ (4,2 − (1.96.0,46 / 25
P (4,2 − 0,21) ≤ µ ≤ (4,2 + 0,21)
P (3,99 ≤ µ ≤ 4,41)
51
Universitas Sumatera Utara
Lampiran 8. (Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
5 + 3 + 4 + 5 + .... + 3
25
=
98
= 3,92
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 3,92) + (3 − 3,92) + (4 − 3,92) + (5 − 3,92) + .... + (3 − 3,92)
=
25
=
17,77
25
= 0,71
•
S = S2
S = 0,71
S = 0,84
•
P ( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n
P (3,92 − (1,96.0,84 / 25 ) ≤ µ ≤ (3,92 + (1.96.0,84 / 25 )
P (3,92 − 0,32) ≤ µ ≤ (3,92 + 0,32)
P (3,6 ≤ µ ≤ 4,24)
52
Universitas Sumatera Utara
Lampiran 9.Tabel penurunan bobot gel pengharum ruangan
Pada ruangan biasa
Bobot (gram)
Kode
Awal
Minggu 1
Minggu 2
Minggu 3
Minggu 4
N1
93,725
86,883
79,358
72,549
65,871
N2
90,225
82,555
75,014
67,452
59,629
N3
91,919
83,094
75,289
67,194
59,911
N4
91,815
81,420
72,191
63,231
54,592
Pada ruangan AC
Bobot (gram)
Kode
Awal
Minggu 1
Minggu 2
Minggu 3
Minggu 4
N1
93,146
83,472
74,099
63,574
54,189
N2
92,439
81,594
70,755
59,912
48,797
N3
91,601
79,415
67,814
55,591
43,924
N4
91,720
78,652
66,351
54,151
42,981
Pada ruangan kipas
Bobot (gram)
Kode
Awal
Minggu 1
Minggu 2
Minggu 3
Minggu 4
N1
90,640
75,346
60,439
45,714
29,964
N2
92,950
76,712
59,985
44,515
27,971
N3
94,787
77,854
60,532
43,691
26,759
N4
97,789
79,961
61,451
43,539
25,675
53
Universitas Sumatera Utara
Lampiran 10. Perhitungan persen total penguapan zat cair
Rumus:
Persen total penguapan zat cair =
zat cair yang menguap (M0−M4)
M0
x 100%
Keterangan:
M0
: berat gel awal
M4
: berat gel pada minggu ke 4
Perhitungan persentase total penguapan zat cair pada ruangan biasa
Formula N1 =
93,725 − 65,871
x 100% = 29,71%
93,725
Formula N2 =
90,225 − 59,629
x 100% = 33,91%
90,225
Formula N3 =
91,919 − 59,911
x 100% = 34,82%
91,919
Formula N4 =
91,815 − 54,592
x 100% = 40,54%
91,815
54
Universitas Sumatera Utara
Lampiran 10.(Lanjutan)
Perhitungan persentase penguapan zat cair pada ruangan AC
Formula N1=
93,146 − 54,189
x 100% = 41,82%
93,146
Formula N2 =
92,439 − 48,797
x 100% = 47,21%
92,439
Formula N3 =
91,601 − 43,924
x 100% = 52,04%
91,601
Formula N4 =
91,720 − 42,981
x 100% = 53,13%
91,720
Perhitungan persentase penguapan zat cair pada ruangan kipas
Formula N1 =
90,640 − 29,964
x 100% = 66,94%
90,640
Formula N2 =
92,950 − 27,971
x 100% = 69,90%
92,950
Formula N3 =
94,787 − 26,759
x 100% = 71,76%
94,787
Formula N4 =
97,789 − 25,675
x 100% = 73,74%
97,789
55
Universitas Sumatera Utara
Lampiran 11.Contoh lembar penilaian uji ketahanan wangi
Lembar Penilaian Uji Ketahanan Wangi
Nama
:
Umur
:
Instruksi
: Berikan pendapat anda tentang aroma wangi sedian gel
pengharum ruangan yang di uji, kemudian berilah tanda centang () pada
salah satu kolom (SW/AKW/KW/SKW/TSW) yang tersedia
Penilaian
Sediaan
SW
AKW
KW
SKW
TSW
1%
1,5%
Lampiran
2% 6.Tabel penguapan zat cair pertiga hari selama 30 hari (gram)
2,5%
Keterangan :
Nilai 5 = Sama Wangi (SW)
Nilai 4 = Agak Kurang Wangi (AKW)
Nilai 3 = Kurang Wangi (KW)
Nilai 2 = Sangat Kurang Wangi (SKW)
Nilai 1 = Tidak Sama Wangi (TSW)
56
Universitas Sumatera Utara
Lampiran 12.Hasil uji ketahanan wangi pada ruangan biasa
Minggu 1
Formula
Panelis
N1
N2
N3
N4
1
5
5
5
5
2
4
5
4
3
3
5
5
4
4
4
5
4
5
5
5
5
5
4
5
6
4
4
4
4
7
5
5
4
3
8
5
5
5
4
9
4
4
4
4
10
5
5
5
5
11
5
5
4
5
12
5
5
4
3
13
5
5
4
4
14
5
4
5
5
15
4
5
5
4
16
5
5
4
4
17
4
4
4
3
18
5
5
5
5
19
4
4
4
3
20
5
4
4
4
21
5
4
4
4
22
5
5
5
5
23
4
4
4
3
24
5
5
5
4
25
5
4
4
3
Jumlah
118
115
109
101
57
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Perhitungan hasil uji ketahanan wangi pada ruangan biasa
Minggu 1
FormulaN1
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
118
= 4,72
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(5 − 4,72)2 + (4 − 4,72)2 + (5 − 4,72)2 + (5 − 4,72)2 + .... + (5 − 4,72)2
25
4,97
25
= 0,19
•
S = S2
S=
0,19
S = 0,43
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,72 − (1,96.0,43 / 25 ) ≤ µ ≤ (4,72 − (1.96.0,43 / 25)
P(4,72 − 0,16) ≤ µ ≤ (4,72 + 0,16)
P(4,88 ≤ µ ≤ 4,56)
58
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
5 + 5 + 5 + 4 + .... + 4
25
=
115
= 4,6
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,6) + (5 − 4,6) + (5 − 4,6) + (4 − 4,6) + .... + (4 − 4,6)
=
25
=
6
25
= 0,24
•
S = S2
S = 0,24
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (4,6 − (1,96.0,48 / 25 ) ≤ µ ≤ (4,6 − (1.96.0,48 / 25)
P (4,6 − 0,18) ≤ µ ≤ (4,6 + 0,18)
P (4,78 ≤ µ ≤ 4,42)
59
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 4 + 5 + .... + 4
25
=
109
= 4,36
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,36 ) + (4 − 4,36 ) + (4 − 4,36 ) + (5 − 4,36 ) + .... + (4 − 4,36)
=
25
=
5,6
25
= 0,22
•
S=
S2
S = 0,22
S = 0,46
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,36 − (1,96.0,46 / 25 ) ≤ µ ≤ (4,36 − (1.96.0,46 / 25)
P(4,36 − 0,18) ≤ µ ≤ (4,36 + 0,18)
P(4,54 ≤ µ ≤ 4,18)
60
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
5 + 3 + 4 + 5 + .... + 3
25
=
101
= 4,04
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,04 ) + (3 − 4,04 ) + (4 − 4,04 ) + (5 − 4,04 ) + .... + (3 − 4,04 )
=
25
=
14,25
25
= 0,59
•
S=
S2
S = 0,59
S = 0,76
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,04 − (1,96.0,76 / 25 ) ≤ µ ≤ (4,04 − (1.96.0,76 / 25)
P(4,04 − 0,29) ≤ µ ≤ (4,04 + 0,29)
P(4,33 ≤ µ ≤ 3,75
61
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Minggu 2
Formula
Panelis
N1
N2
N3
N4
1
5
5
4
4
2
4
3
3
3
3
5
4
3
3
4
4
4
4
4
5
5
4
3
3
6
4
3
3
3
7
3
3
4
3
8
5
5
4
4
9
4
4
4
4
10
5
5
4
4
11
3
5
4
3
12
4
5
4
3
13
5
5
4
4
14
5
4
4
4
15
4
5
4
4
16
5
5
4
4
17
4
4
3
3
18
5
5
4
4
19
5
4
4
3
20
5
4
4
4
21
4
4
4
3
22
5
5
4
4
23
4
4
4
3
24
4
5
5
4
25
5
4
4
3
Jumlah
111
108
96
88
62
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Minggu 2
FormulaN1
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
111
= 4,44
25
∑ (Xi − X )
=
2
n
•
S
=
=
2
i
n
(5 − 4,44)2 + (4 − 4,44)2 + (5 − 4,44)2 + (4 − 4,44)2 + .... + (5 − 4,44)2
25
8,8
25
= 0,35
•
S=
S2
S = 0,35
S = 0,59
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (4,44 − (1,96.0,59 / 25 ) ≤ µ ≤ (4,44 − (1.96.0,59 / 25)
P(4,44 − 0,23) ≤ µ ≤ (4,44 + 0,23)
P(4,67 ≤ µ ≤ 4,21)
63
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
108
= 4,32
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,32 ) + (3 − 4,32 ) + (4 − 4,32 ) + (4 − 4,32 ) + .... + (4 − 4,32 )
=
25
=
11,44
25
= 0,45
•
S=
S2
S = 0,45
S = 0,67
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (4,32 − (1,96.0,67 / 25 ) ≤ µ ≤ (4,32 − (1.96.0,67 / 25)
P (4,32 − 0,26) ≤ µ ≤ (4,32 + 0,26)
P(4,58 ≤ µ ≤ 4,06)
64
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
96
= 3,84
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,84 ) + (3 − 3,84 ) + (3 − 3,84 ) + (4 − 3,84 ) + .... + (4 − 3,84 )
=
25
=
5,36
25
= 0,21
•
S=
S2
S = 0,21
S = 0,45
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,84 − (1,96.0,45 / 25 ) ≤ µ ≤ (3,84 − (1.96.0,45 / 25)
P(3,84 − 0,17) ≤ µ ≤ (3,84 + 0,17)
P(4,01 ≤ µ ≤ 3,67)
65
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
88
= 3,52
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,52 ) + (3 − 3,52 ) + (3 − 3,52 ) + (4 − 3,52 ) + .... + (4 − 3,52 )
=
25
=
6,24
25
= 0,24
•
S=
S2
S = 0,24
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,52 − (1,96.0,48 / 25 ) ≤ µ ≤ (3,52 − (1.96.0,48 / 25)
P(3,52 − 0,18) ≤ µ ≤ (3,52 + 0,18)
P(3,70 ≤ µ ≤ 3,34)
66
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Minggu 3
Formula
Panelis
N1
N2
N3
N4
1
4
4
4
3
2
3
3
4
3
3
4
4
3
3
4
3
4
3
2
5
4
4
3
3
6
4
4
3
2
7
3
3
4
3
8
3
4
4
3
9
4
4
3
2
10
4
3
2
2
11
3
4
3
2
12
4
3
2
2
13
4
3
2
3
14
3
4
3
2
15
4
3
2
3
16
3
4
3
2
17
4
2
2
3
18
3
3
4
2
19
3
4
3
3
20
3
4
3
2
21
2
3
2
2
22
4
4
3
2
23
3
4
2
3
24
4
3
3
2
25
2
2
2
2
Jumlah
85
87
72
61
67
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
4 + 3 + 4 + 3 + .... + 2
25
=
85
= 3,4
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,4 ) + (3 − 3,4 ) + (4 − 3,4 ) + (3 − 3,4 ) + .... + (2 − 3,4 )
=
25
=
10
25
= 0,4
•
S=
S2
S = 0,4
S = 0,63
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,4 − (1,96.0,63 / 25 ) ≤ µ ≤ (3,4 − (1.96.0,63 / 25)
P(3,4 − 0,24) ≤ µ ≤ (3,4 + 0,24)
P(3,64 ≤ µ ≤ 3,14)
68
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
4 + 3 + 4 + 4 + .... + 2
25
=
87
= 3,48
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,48) + (3 − 3,48) + (4 − 3,48) + (4 − 3,48) + .... + (2 − 3,48)
=
25
=
10,24
25
= 0,4096
•
S=
S2
S = 0,4096
S = 0,64
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,48 − (1,96.0,64 / 25 ) ≤ µ ≤ (3,48 − (1.96.0,64 / 25)
P(3,48 − 0,25) ≤ µ ≤ (3,48 + 0,25)
P(3,73 ≤ µ ≤ 3,23)
69
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
4 + 4 + 3 + 3 + .... + 2
25
=
72
= 2,88
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 2,88) + (4 − 2,88) + (3 − 2,88) + (3 − 2,88) + .... + (2 − 2,88)
=
25
=
12,64
25
= 0,5056
•
S=
S2
S = 0,5056
S = 0,71
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,88 − (1,96.0,71 / 25 ) ≤ µ ≤ (2,88 − (1.96.0,71 / 25)
P(2,88 − 0,27) ≤ µ ≤ (2,88 + 0,27)
P(3,15 ≤ µ ≤ 2,61)
70
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 3 + 2 + .... + 2
25
=
61
= 2,44
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 2,44 ) + (3 − 2,44 ) + (3 − 2,44 ) + (2 − 2,44 ) + .... + (2 − 2,44 )
=
25
=
6,16
25
= 0,2426
•
S=
S2
S = 0,2426
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,44 − (1,96.0,49 / 25 ) ≤ µ ≤ (2,44 − (1.96.0,49 / 25)
P(2,44 − 0,19) ≤ µ ≤ (2,44 + 0,19)
P(2,63 ≤ µ ≤ 2,25)
71
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Minggu 4
Formula
Panelis
N1
N2
N3
N4
1
2
2
1
1
2
1
1
2
1
3
2
2
2
2
4
1
1
1
1
5
2
1
2
1
6
2
2
1
2
7
2
1
2
2
8
1
1
1
1
9
2
2
1
1
10
2
1
1
1
11
3
2
2
1
12
2
1
2
1
13
2
1
1
1
14
1
1
2
2
15
2
1
1
1
16
3
2
2
1
17
2
1
1
1
18
2
1
1
1
19
1
1
2
2
20
3
2
1
1
21
2
1
2
1
22
2
2
1
1
23
1
1
2
1
24
2
1
1
2
25
2
2
1
1
Jumlah
47
34
36
31
72
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 1 + .... + 2
25
=
47
= 1,88
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
2 − 1,88) + (1 − 1,88) + (2 − 1,88) + (1 − 1,88) + .... + (2 − 1,88)
=
25
=
8,64
25
= 0,3456
•
S=
S2
S = 0,3456
S = 0,58
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,88 − (1,96.0,58 / 25 ) ≤ µ ≤ (1,88 − (1.96.0,58 / 25)
P(1,88 − 0,22) ≤ µ ≤ (1,88 + 0,22)
P(2,1 ≤ µ ≤ 1,66)
73
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 1 + .... + 2
25
=
34
= 1,36
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
2 − 1,36 ) + (1 − 1,36 ) + (2 − 1,36 ) + (1 − 1,36 ) + .... + (2 − 1,36 )
=
25
=
5,63
25
= 0,2252
•
S=
S2
S = 0,2252
S = 0,47
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,36 − (1,96.0,47 / 25 ) ≤ µ ≤ (1,36 − (1.96.0,47 / 25)
P(1,36 − 0,18) ≤ µ ≤ (1,36 + 0,18)
P(1,54 ≤ µ ≤ 1,18)
74
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
1 + 2 + 2 + 1 + .... + 1
25
=
36
= 1,44
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
1 − 1,44 ) + (2 − 1,44 ) + (2 − 1,44 ) + (1 − 1,44 ) + .... + (1 − 1,44 )
=
25
=
8,87
25
= 0,35
•
S=
S2
S = 0,35
S = 0,59
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,44 − (1,96.0,59 / 25 ) ≤ µ ≤ (1,44 − (1.96.0,59 / 25)
P (1,44 − 0,23) ≤ µ ≤ (1,44 + 0,23)
P (1,67 ≤ µ ≤ 1,21)
75
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 2 + 1 + .... + 1
25
=
31
= 1,24
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
1 − 1,24 ) + (1 − 1,24 ) + (2 − 1,24 ) + (1 − 1,24 ) + .... + (1 − 1,24 )
=
25
=
4,56
25
= 0,1824
•
S=
S2
S = 0,1824
S = 0,42
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,24 − (1,96.0,42 / 25 ) ≤ µ ≤ (1,24 − (1.96.0,42 / 25)
P(1,24 − 0,16) ≤ µ ≤ (1,24 + 0,16)
P(1,4 ≤ µ ≤ 1,08)
76
Universitas Sumatera Utara
Lampiran 13.Hasil uji ketahanan wangi pada ruangan AC
Minggu 1
Formula
Panelis
N1
N2
N3
N4
1
5
5
4
3
2
5
4
3
2
3
5
4
3
3
4
4
5
4
3
5
5
4
3
3
6
4
3
3
3
7
5
4
4
3
8
5
5
3
4
9
4
4
4
3
10
3
3
4
4
11
5
4
3
3
12
4
4
4
3
13
5
5
3
4
14
5
4
4
3
15
4
5
3
4
16
5
5
4
4
17
4
4
3
2
18
5
5
4
4
19
4
4
4
3
20
5
5
3
4
21
4
4
4
3
22
5
4
4
3
23
4
5
2
3
24
3
3
3
2
25
5
4
4
3
Jumlah
112
106
87
79
77
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
5 + 5 + 5 + 4 + .... + 5
25
=
112
= 4,48
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,48) + (5 − 4,48) + (5 − 4,48) + (4 − 4,48) + .... + (5 − 4,48)
=
25
=
10,24
25
= 0,4096
•
S=
S2
S = 0,4096
S = 0,64
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,48 − (1,96.0,64 / 25 ) ≤ µ ≤ (4,48 − (1.96.0,64 / 25)
P(4,48 − 0,25) ≤ µ ≤ (4,48 + 0,25)
P(4,73 ≤ µ ≤ 4,23)
78
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 4 + 5 + .... + 4
25
=
106
= 4,24
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,24 ) + (4 − 4,24 ) + (4 − 4,24 ) + (5 − 4,24 ) + .... + (4 − 4,24 )
=
25
=
10,56
25
= 0,4224
•
S=
S2
S = 0,4224
S = 0,64
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,24 − (1,96.0,64 / 25 ) ≤ µ ≤ (4,24 − (1.96.0,64 / 25)
P(4,24 − 0,25) ≤ µ ≤ (4,24 + 0,25)
P(4,49 ≤ µ ≤ 3,99)
79
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
4 + 3 + 3 + 4 + .... + 4
25
=
89
= 3,56
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,56 ) + (3 − 3,56 ) + (3 − 3,56 ) + (4 − 3,56 ) + .... + (4 − 3,56 )
=
25
=
6,16
25
= 0,2464
•
S=
S2
S = 0,2426
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,56 − (1,96.0,49 / 25 ) ≤ µ ≤ (3,56 − (1.96.0,49 / 25)
P(3,56 − 0,19) ≤ µ ≤ (3,56 + 0,19)
P(3,75 ≤ µ ≤ 3,37)
80
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
3 + 2 + 3 + 3 + .... + 3
25
=
79
= 3,16
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,56 ) + (3 − 3,56 ) + (3 − 3,56 ) + (4 − 3,56 ) + .... + (4 − 3,56 )
=
25
=
9,36
25
= 0,3744
•
S=
S2
S = 0,3744
S = 0,61
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,16 − (1,96.0,61 / 25 ) ≤ µ ≤ (3,16 − (1.96.0,61 / 25)
P(3,16 − 0,23) ≤ µ ≤ (3,16 + 0,23)
P(3,39 ≤ µ ≤ 2,93)
81
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Minggu 2
Formula
Panelis
N1
N2
N3
N4
1
3
3
3
2
2
3
3
3
2
3
4
3
2
2
4
3
2
2
1
5
2
2
2
1
6
4
3
3
3
7
3
4
4
3
8
3
3
3
2
9
4
4
4
3
10
3
3
4
2
11
3
3
3
3
12
4
3
3
2
13
3
2
2
1
14
2
2
2
1
15
4
3
3
2
16
3
2
2
1
17
4
3
3
2
18
3
3
2
2
19
2
2
2
2
20
3
3
3
2
21
3
3
2
3
22
3
3
2
2
23
2
2
2
2
24
3
3
3
2
25
2
2
2
2
Jumlah
76
69
66
50
82
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 4 + 3 + .... + 2
25
=
76
= 3,04
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 3,04 ) + (3 − 3,04 ) + (4 − 3,04 ) + (3 − 3,04 ) + .... + (2 − 3,04 )
=
25
=
10,96
25
= 0,4384
•
S = S2
S = 0,4384
S = 0,66
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,04 − (1,96.0,66 / 25 ) ≤ µ ≤ (3,04 − (1.96.0,66 / 25)
P(3,04 − 0,25) ≤ µ ≤ (3,04 + 0,25)
P(3,29 ≤ µ ≤ 2,79)
83
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 3 + 2 + .... + 2
25
=
69
= 2,76
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 3,04 ) + (3 − 3,04 ) + (3 − 3,04 ) + (2 − 3,04 ) + .... + (2 − 3,04 )
=
25
=
8,56
25
= 0,3424
•
S = S2
S = 0,3424
S = 0,58
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,76 − (1,96.0,58 / 25 ) ≤ µ ≤ (2,76 − (1.96.0,58 / 25)
P(2,76 − 0,22) ≤ µ ≤ (2,76 + 0,22)
P(2,98 ≤ µ ≤ 2,54)
84
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 2 + 2 + .... + 2
25
=
66
= 2,64
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 2,64 ) + (3 − 2,64 ) + (2 − 2,64 ) + (2 − 2,64 ) + .... + (2 − 2,64 )
=
25
=
11,76
25
= 0,4704
•
S = S2
S = 0,4704
S = 0,68
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,64 − (1,96.0,68 / 25 ) ≤ µ ≤ (2,64 − (1.96.0,68 / 25)
P(2,64 − 0,26) ≤ µ ≤ (2,64 + 0,26)
P(2,9 ≤ µ ≤ 2,38)
85
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
2 + 2 + 2 + 1 + .... + 2
25
=
50
=2
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 2 ) + (3 − 2 ) + (2 − 2 ) + (2 − 2 ) + .... + (2 − 2 )
=
25
=
2
25
= 0,08
•
S = S2
S = 0,08
S = 0,28
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (2 − (1,96.0,28 / 25 ) ≤ µ ≤ (2 − (1.96.0,28 / 25)
P (2 − 0,1) ≤ µ ≤ (2 + 0,1)
P(2,1 ≤ µ ≤ 1,9)
86
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Minggu 3
Formula
Panelis
N1
N2
N3
N4
1
2
2
1
1
2
3
3
2
1
3
2
2
2
2
4
3
2
1
1
5
2
2
2
1
6
2
3
2
2
7
3
2
2
1
8
3
3
2
2
9
2
2
2
1
10
3
3
2
2
11
3
2
2
1
12
2
3
3
2
13
3
2
2
1
14
2
2
2
1
15
2
3
2
2
16
3
2
2
1
17
2
3
1
2
18
3
3
2
2
19
2
2
2
2
20
3
3
2
1
21
2
1
2
1
22
3
3
2
2
23
2
2
2
2
24
3
2
1
1
25
2
1
1
1
Jumlah
62
58
46
36
87
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
2 + 3 + 2 + 3 + .... + 2
25
=
62
= 2,48
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
2 − 2,48) + (3 − 2,48) + (2 − 2,48) + (3 − 2,48) + .... + (2 − 2,48)
=
25
=
6,24
25
= 0,2496
•
S = S2
S = 0,2496
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,48 − (1,96.0,49 / 25 ) ≤ µ ≤ (2,48 − (1.96.0,49 / 25)
P(2,48 − 0,19) ≤ µ ≤ (2,48 + 0,19)
P(2,67 ≤ µ ≤ 2,29)
88
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
2 + 3 + 2 + 2 + .... + 1
25
=
58
= 2,32
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
2 − 2,32) + (3 − 2,32) + (2 − 2,32) + (2 − 2,32) + .... + (1 − 2,32 )
=
25
=
10,745
25
= 0,4298
•
S = S2
S = 0,4298
S = 0,65
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,32 − (1,96.0,65 / 25 ) ≤ µ ≤ (2,32 − (1.96.0,65 / 25)
P(2,32 − 0,25) ≤ µ ≤ (2,32 + 0,25)
P(2,57 ≤ µ ≤ 2,07)
89
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
1 + 2 + 2 + 1 + .... + 1
25
=
46
= 1,84
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
1 − 1,84) + (2 − 1,84 ) + (2 − 1,84 ) + (1 − 1,84 ) + .... + (1 − 1,84 )
=
25
=
5,36
25
= 0,2144
•
S = S2
S = 0,2144
S = 0,46
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,84 − (1,96.0,46 / 25 ) ≤ µ ≤ (1,84 − (1.96.0,46 / 25)
P (1,84 − 0,18) ≤ µ ≤ (1,84 + 0,18)
P (2,02 ≤ µ ≤ 1,66)
90
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 2 + 1 + .... + 1
25
=
36
= 1,44
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
1 − 1,44 ) + (1 − 1,44 ) + (2 − 1,44 ) + (1 − 1,44 ) + .... + (1 − 1,44 )
=
25
=
6,61
25
= 0,2464
•
S = S2
S = 0,2464
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,44 − (1,96.0,49 / 25 ) ≤ µ ≤ (1,44 − (1.96.0,49 / 25)
P(1,44 − 0,19) ≤ µ ≤ (1,44 + 0,19)
P(1,63 ≤ µ ≤ 1,25)
91
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Minggu 4
Formula
Panelis
N1
N2
N3
N4
1
2
2
1
1
2
1
1
1
1
3
1
1
2
1
4
2
2
1
1
5
1
2
2
1
6
2
1
1
1
7
1
1
2
1
8
2
1
1
1
9
1
2
2
1
10
2
1
1
1
11
1
1
2
1
12
2
1
1
1
13
1
2
2
1
14
2
1
1
1
15
1
1
1
2
16
1
2
1
1
17
1
1
1
2
18
2
1
2
2
19
2
2
2
2
20
1
1
1
1
21
1
1
2
1
22
2
1
2
2
23
1
2
1
1
24
2
1
1
1
25
2
1
1
1
Jumlah
37
33
35
30
92
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Formula N1
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 1 + 2 + .... + 2
25
=
37
= 1,48
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,48)2 + (1 − 1,48)2 + (1 − 1,48)2 + (2 − 1,48)2 + .... + (2 − 1,48)2
25
6,24
25
= 0,2496
•
S = S2
S = 0,2496
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,48 − (1,96.0,49 / 25 ) ≤ µ ≤ (1,48 − (1.96.0,49 / 25)
P (1,48 − 0,19) ≤ µ ≤ (1,48 + 0,19)
P (1,67 ≤ µ ≤ 1,29)
93
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Formula N2
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 1 + 2 + .... + 1
25
=
33
= 1,32
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,32)2 + (1 − 1,32)2 + (1 − 1,32)2 + (2 − 1,32)2 + .... + (1 − 1,32)2
25
5,44
25
= 0,2176
•
S = S2
S = 0,2176
S = 0,46
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,32 − (1,96.0,46 / 25 ) ≤ µ ≤ (1,32 − (1.96.0,46 / 25)
P (1,32 − 0,18) ≤ µ ≤ (1,32 + 0,18)
P(1,5 ≤ µ ≤ 1,14)
94
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Formula N3
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 2 + 1 + .... + 1
25
=
35
= 1,4
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(1 − 1,4)2 + (1 − 1,4)2 + (2 − 1,4)2 + (1 − 1,4)2 + .... + (1 − 1,4)2
25
6
25
= 0,24
•
S = S2
S = 0,24
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,4 − (1,96.0,48 / 25 ) ≤ µ ≤ (1,4 − (1.96.0,48 / 25)
P(1,4 − 0,18) ≤ µ ≤ (1,4 + 0,18)
P(1,58 ≤ µ ≤ 1,22)
95
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Formula N4
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 1 + 1 + .... + 1
25
=
33
= 1,2
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(1 − 1,2)2 + (1 − 1,2)2 + (1 − 1,2)2 + (1 − 1,2)2 + .... + (1 − 1,2)2
25
4
25
= 0,16
•
S = S2
S = 0,16
S = 0,4
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,2 − (1,96.0,4 / 25 ) ≤ µ ≤ (1,2 − (1.96.0,4 / 25)
P(1,2 − 0,18) ≤ µ ≤ (1,2 + 0,18)
P(1,35 ≤ µ ≤ 1,05)
96
Universitas Sumatera Utara
Lampiran 14.Hasil uji ketahanan wangi pada ruangan kipas
Minggu 1
Formula
Panelis
N1
N2
N3
N4
1
4
4
3
2
2
3
4
3
3
3
4
3
4
3
4
3
3
3
2
5
4
4
3
3
6
4
3
3
3
7
3
4
4
3
8
3
3
3
3
9
4
4
4
3
10
3
3
4
3
11
3
3
3
3
12
4
3
3
3
13
3
3
2
3
14
3
3
2
3
15
4
3
3
2
16
3
3
2
3
17
4
3
3
4
18
3
3
3
2
19
3
3
3
3
20
3
3
3
2
21
4
3
4
4
22
3
3
3
3
23
4
4
3
3
24
3
3
3
4
25
4
3
3
4
Jumlah
86
81
77
74
97
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
4 + 3 + 4 + 3 + .... + 4
25
=
86
= 3,44
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(4 − 3,44)2 + (3 − 3,44)2 + (4 − 3,44)2 + (3 − 3,44)2 + .... + (4 − 3,44)2
25
6,16
25
= 0,2464
•
S = S2
S = 0,2464
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (3,44 − (1,96.0,49 / 25 ) ≤ µ ≤ (3,44 − (1.96.0,49 / 25)
P (3,44 − 0,19) ≤ µ ≤ (3,44 + 0,19)
P(3,63 ≤ µ ≤ 3,25)
98
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
4 + 4 + 3 + 3 + .... + 3
25
=
81
= 3,24
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(4 − 3,24)2 + (4 − 3,24)2 + (3 − 3,24)2 + (3 − 3,24)2 + .... + (3 − 3,24)2
25
4,56
25
= 0,1824
•
S = S2
S = 0,1824
S = 0,42
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,24 − (1,96.0,42 / 25 ) ≤ µ ≤ (3,24 − (1.96.0,42 / 25)
P(3,24 − 0,16) ≤ µ ≤ (3,24 + 0,16)
P(3,4 ≤ µ ≤ 3,08)
99
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 4 + 3 + .... + 3
25
=
77
= 3,08
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(3 − 3,08)2 + (3 − 3,08)2 + (4 − 3,08)2 + (3 − 3,08)2 + .... + (3 − 3,08)2
25
11,2256
25
= 0,449
•
S = S2
S = 0,449
S = 0,67
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,08 − (1,96.0,67 / 25 ) ≤ µ ≤ (3,08 − (1.96.0,67 / 25)
P(3,08 − 0,26) ≤ µ ≤ (3,08 + 0,26)
P(3,34 ≤ µ ≤ 2,82)
100
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
2 + 3 + 3 + 3 + .... + 2
25
=
74
= 2,96
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 2,96)2 + (3 − 2,96)2 + (3 − 2,96)2 + (3 − 2,96)2 + .... + (2 − 2,96)2
25
8,96
25
= 0,3584
•
S = S2
S = 0,3584
S = 0,59
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (2,96 − (1,96.0,59 / 25 ) ≤ µ ≤ (2,96 − (1.96.0,59 / 25)
P(2,96 − 0,23) ≤ µ ≤ (2,96 + 0,23)
P(3,19 ≤ µ ≤ 2,73)
101
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
Minggu 2
Formula
Panelis
N1
N2
N3
N4
1
3
2
2
2
2
2
3
2
1
3
2
2
2
2
4
3
3
2
2
5
2
2
2
2
6
3
3
2
2
7
2
2
2
1
8
3
3
2
2
9
2
2
2
1
10
3
2
2
2
11
2
2
2
1
12
2
3
3
2
13
3
2
2
2
14
2
2
2
1
15
2
3
2
2
16
3
2
2
2
17
2
3
2
2
18
3
2
2
2
19
2
2
2
2
20
3
3
2
2
21
2
2
2
1
22
3
3
2
2
23
3
2
2
2
24
2
2
2
1
25
2
2
2
1
Jumlah
61
59
51
42
102
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
3 + 2 + 2 + 3 + .... + 2
25
=
61
= 2,44
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(3 − 2,44)2 + (2 − 2,44)2 + (2 − 2,44)2 + (3 − 2,44)2 + .... + (2 − 2,44)2
25
6,16
25
= 0,2464
•
S = S2
S = 0,2464
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (2,44 − (1,96.0,49 / 25 ) ≤ µ ≤ (2,44 − (1.96.0,49 / 25)
P (2,44 − 0,19) ≤ µ ≤ (2,44 + 0,19)
P(2,63 ≤ µ ≤ 2,25)
103
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
2 + 3 + 2 + 3 + .... + 2
25
=
59
= 2,36
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 2,36)2 + (3 − 2,36)2 + (2 − 2,36)2 + (3 − 2,36)2 + .... + (2 − 2,36)2
25
5,76
25
= 0,2304
•
S = S2
S = 0,2304
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (2,36 − (1,96.0,48 / 25 ) ≤ µ ≤ (2,36 − (1.96.0,48 / 25)
P (2,36 − 0,18) ≤ µ ≤ (2,36 + 0,18)
P(2,54 ≤ µ ≤ 2,18)
104
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
2 + 2 + 2 + 2 + .... + 2
25
=
51
= 2,04
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 2,04)2 + (2 − 2,04)2 + (2 − 2,04)2 + (2 − 2,04)2 + .... + (2 − 2,04)2
25
0,96
25
= 0,0384
•
S = S2
S = 0,0384
S = 0,19
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,04 − (1,96.0,19 / 25 ) ≤ µ ≤ (2,04 − (1.96.0,19 / 25)
P(2,04 − 0,074) ≤ µ ≤ (2,04 + 0,074)
P(2,11 ≤ µ ≤ 1,96)
105
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 2 + .... + 1
25
=
42
= 1,68
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,68)2 + (1 − 1,68)2 + (2 − 1,68)2 + (2 − 1,68)2 + .... + (1 − 1,68)2
25
5,44
25
= 0,2176
•
S = S2
S = 0,2176
S = 0,46
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,68 − (1,96.0,46 / 25 ) ≤ µ ≤ (1,68 − (1.96.0,46 / 25)
P(1,68 − 0,18) ≤ µ ≤ (1,68 + 0,18)
P(1,86 ≤ µ ≤ 1,5)
106
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
Minggu 3
Formula
Panelis
N1
N2
N3
N4
1
2
2
1
1
2
1
1
1
1
3
2
2
1
2
4
2
1
1
1
5
1
2
2
1
6
2
1
1
1
7
2
2
1
1
8
2
1
1
1
9
1
1
2
1
10
1
1
1
1
11
1
1
2
1
12
2
1
1
1
13
1
2
2
1
14
2
1
1
1
15
1
1
1
2
16
1
2
1
1
17
2
1
1
2
18
2
1
2
2
19
2
2
2
1
20
1
1
1
1
21
1
2
1
2
22
2
1
1
1
23
1
2
1
1
24
1
1
1
1
25
1
1
1
1
Jumlah
37
34
31
30
107
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 2 + .... + 1
25
=
37
= 1,48
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,48)2 + (1 − 1,48)2 + (2 − 1,48)2 + (2 − 1,48)2 + .... + (1 − 1,48)2
25
6,24
25
= 0,2496
•
S = S2
S = 0,2496
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,48 − (1,96.0,49 / 25 ) ≤ µ ≤ (1,48 − (1.96.0,49 / 25)
P(1,48 − 0,19) ≤ µ ≤ (1,48 + 0,19)
P(1,67 ≤ µ ≤ 1,29)
108
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 1 + .... + 1
25
=
34
= 1,36
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,36)2 + (1 − 1,48)2 + (2 − 1,48)2 + (1 − 1,48)2 + .... + (1 − 1,48)2
25
5,76
25
= 0,2304
•
S = S2
S = 0,2304
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,36 − (1,96.0,48 / 25 ) ≤ µ ≤ (1,36 − (1.96.0,48 / 25)
P (1,36 − 0,18) ≤ µ ≤ (1,36 + 0,18)
P(1,54 ≤ µ ≤ 1,18)
109
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 1 + 1 + .... + 1
25
=
31
= 1,24
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(1 − 1,24)2 + (1 − 1,24)2 + (1 − 1,24)2 + (1 − 1,24)2 + .... + (1 − 1,24)2
25
4,56
25
= 0,1824
•
S = S2
S = 0,1824
S = 0,42
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,24 − (1,96.0,42 / 25 ) ≤ µ ≤ (1,24 − (1.96.0,42 / 25)
P(1,24 − 0,16) ≤ µ ≤ (1,24 + 0,16)
P(1,4 ≤ µ ≤ 1,08)
110
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 2 + 1 + .... + 1
25
=
30
= 1,2
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(1 − 1,2)2 + (1 − 1,2)2 + (2 − 1,2)2 + (1 − 1,2)2 + .... + (1 − 1,2)2
25
4
25
= 0,16
•
S=
S2
S = 0,16
S = 0,4
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,2 − (1,96.0,4 / 25 ) ≤ µ ≤ (1,2 − (1.96.0,4 / 25)
P(1,2 − 0,16) ≤ µ ≤ (1,2 + 0,16)
P(1,35 ≤ µ ≤ 1,05)
111
Universitas Sumatera Utara
Lampiran 1. Bagan alir pembuatan basis gel
Aquades
Dipanaskan hingga suhu 75°C
Karagenan,
Aduk hingga homogen
Natrium
Turunkan suhu hingga 650 C
Aduk hingga homogen
Propilen glikol
Tuangkan dalam cetakan
Biarkan pada suhu ruangan hingga
Bentuk sediaan gel
43
Universitas Sumatera Utara
Lampiran 2. Bagan alir pembuatan gel pengharum
Aquades
Aquades
Dipanaskan hingga suhu 75°C
Karagenan,
Aduk hingga homogen
Natrium
Turunkan suhu hingga 650 C
Aduk hingga homogen
Propilen glikol
Minyak lemon,
i
Aduk hingga homogen
k il
Tuangkan dalam cetakan
Biarkan pada suhu ruangan hingga
Gel pengharum ruangan
44
Universitas Sumatera Utara
Lampiran 3.Gambar minyak lemon
Lampiran 4.Gambar minyak nilam
45
Universitas Sumatera Utara
Lampiran 5.Contoh lembar penilaian uji kesukaan (hedonic test)
Lembar Penilaian Uji Kesukaan (Hedonic Test)
Nama
:
Umur
:
Instruksi
: Berikan pendapat anda tentang aroma wangi sedian gel
pengharum ruangan yang di uji, kemudian berilah tanda centang () pada
salah satu kolom (SS/S/CS/KS/TS) yang tersedia
Penilaian
Sediaan
SS
S
CS
KS
TS
1%
1,5%
Lampiran
2% 6.Tabel penguapan zat cair pertiga hari selama 30 hari (gram)
2,5%
Keterangan :
Nilai 5 = Sangat Suka (SS)
Nilai 4 = Suka (S)
Nilai 3 = Cukup Suka (CS)
Nilai 2 = Kurang Suka (KS)
Nilai 1 = Tidak Suka (TS)
46
Universitas Sumatera Utara
Lampiran 6.Rumus perhitungan nilai uji kesukaan (hedonic test)
Untuk menghitung nilai kesukaan rata-rata dari setiap panelis digunakan
rumus sebagai berikut:
∑ = Xi
X =
n
•
i
n
∑ (Xi − X )
=
2
n
•
S2
•
S = S2
•
P ( X − (1,96.S / n ) ≤ µ ≤ ( X + (1,96.S / n ) ≅ 95%
i
n
Keterangan :
n
S2
1,96
X
Xi
S
P
µ
: Banyak panelis
: Keseragaman nilai kesukaan
: Koefisien standar deviasi pada taraf 95%
: Nilai kesukaan rata-rata
: Nilai dari panelis ke i, dimana i = 1,2,3,…,n
: Simpangan baku nilai kesukaan
: Tingkat kepercayaan
: Rentang nilai
47
Universitas Sumatera Utara
Lampiran 7.Tabel hasil uji kesukaan (hedonic test)
Formula
Panelis
N1
N2
N3
N4
1
5
5
5
5
2
5
4
3
3
3
4
4
4
4
4
5
4
5
5
5
5
5
4
5
6
4
4
4
4
7
5
5
4
3
8
3
4
3
3
9
4
4
4
4
10
5
5
5
5
11
3
3
4
5
12
5
5
4
3
13
5
5
4
4
14
5
4
5
5
15
4
4
4
3
16
5
5
4
3
17
4
4
4
3
18
5
5
5
5
19
4
4
4
3
20
5
4
4
4
21
5
4
4
4
22
5
5
5
5
23
4
4
4
3
24
5
5
5
4
25
5
4
4
3
Jumlah
114
109
105
98
48
Universitas Sumatera Utara
Lampiran 8.Perhitungan hasil uji kesukaan (hedonic test)
Formula N1
∑ = Xi
X =
n
•
i
n
=
5 + 5 + 4 + 5 + .... + 5
25
=
114
= 4,56
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,56) + (5 − 4,56) + (4 − 4,56) + (5 − 4,56 ) + .... + (5 − 4,56 )
=
25
=
10,05
25
= 0,402
•
S = S2
S = 0,402
S = 0,63
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (4,56 − (1,96.0,63 / 25 ) ≤ µ ≤ ( 4,56 − (1.96.0,63 / 25)
P (4,56 − 0,24) ≤ µ ≤ (4,56 + 0,24)
P (4,80 ≤ µ ≤ 4,31)
49
Universitas Sumatera Utara
Lampiran 8. (Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 4 + 4 + .... + 4
25
=
109
= 4,36
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,36) + (4 − 4,36 ) + (4 − 4,36 ) + (4 − 4,36 ) + .... + (4 − 4,36 )
=
25
=
7,74
25
= 0,309
•
S = S2
S = 0,309
S = 0,55
•
P ( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n
P (4,36 − (1,96.0,55 / 25 ) ≤ µ ≤ (4,36 + (1.96.0,55 / 25 )
P(4,36 − 0,21) ≤ µ ≤ (4,36 + 0,21)
P(4,15 ≤ µ ≤ 4,57)
50
Universitas Sumatera Utara
Lampiran 8. (Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
5 + 3 + 4 + 5 + .... + 4
25
=
105
= 4,2
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,2 ) + (3 − 4,2 ) + (4 − 4,2 ) + (5 − 4,2 ) + .... + (4 − 4,2 )
=
25
=
8
25
= 0,32
•
S = S2
S = 0,32
S = 0,56
•
P ( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n
P (4,2 − (1,96.0,56 / 25 ) ≤ µ ≤ (4,2 − (1.96.0,46 / 25
P (4,2 − 0,21) ≤ µ ≤ (4,2 + 0,21)
P (3,99 ≤ µ ≤ 4,41)
51
Universitas Sumatera Utara
Lampiran 8. (Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
5 + 3 + 4 + 5 + .... + 3
25
=
98
= 3,92
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 3,92) + (3 − 3,92) + (4 − 3,92) + (5 − 3,92) + .... + (3 − 3,92)
=
25
=
17,77
25
= 0,71
•
S = S2
S = 0,71
S = 0,84
•
P ( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n
P (3,92 − (1,96.0,84 / 25 ) ≤ µ ≤ (3,92 + (1.96.0,84 / 25 )
P (3,92 − 0,32) ≤ µ ≤ (3,92 + 0,32)
P (3,6 ≤ µ ≤ 4,24)
52
Universitas Sumatera Utara
Lampiran 9.Tabel penurunan bobot gel pengharum ruangan
Pada ruangan biasa
Bobot (gram)
Kode
Awal
Minggu 1
Minggu 2
Minggu 3
Minggu 4
N1
93,725
86,883
79,358
72,549
65,871
N2
90,225
82,555
75,014
67,452
59,629
N3
91,919
83,094
75,289
67,194
59,911
N4
91,815
81,420
72,191
63,231
54,592
Pada ruangan AC
Bobot (gram)
Kode
Awal
Minggu 1
Minggu 2
Minggu 3
Minggu 4
N1
93,146
83,472
74,099
63,574
54,189
N2
92,439
81,594
70,755
59,912
48,797
N3
91,601
79,415
67,814
55,591
43,924
N4
91,720
78,652
66,351
54,151
42,981
Pada ruangan kipas
Bobot (gram)
Kode
Awal
Minggu 1
Minggu 2
Minggu 3
Minggu 4
N1
90,640
75,346
60,439
45,714
29,964
N2
92,950
76,712
59,985
44,515
27,971
N3
94,787
77,854
60,532
43,691
26,759
N4
97,789
79,961
61,451
43,539
25,675
53
Universitas Sumatera Utara
Lampiran 10. Perhitungan persen total penguapan zat cair
Rumus:
Persen total penguapan zat cair =
zat cair yang menguap (M0−M4)
M0
x 100%
Keterangan:
M0
: berat gel awal
M4
: berat gel pada minggu ke 4
Perhitungan persentase total penguapan zat cair pada ruangan biasa
Formula N1 =
93,725 − 65,871
x 100% = 29,71%
93,725
Formula N2 =
90,225 − 59,629
x 100% = 33,91%
90,225
Formula N3 =
91,919 − 59,911
x 100% = 34,82%
91,919
Formula N4 =
91,815 − 54,592
x 100% = 40,54%
91,815
54
Universitas Sumatera Utara
Lampiran 10.(Lanjutan)
Perhitungan persentase penguapan zat cair pada ruangan AC
Formula N1=
93,146 − 54,189
x 100% = 41,82%
93,146
Formula N2 =
92,439 − 48,797
x 100% = 47,21%
92,439
Formula N3 =
91,601 − 43,924
x 100% = 52,04%
91,601
Formula N4 =
91,720 − 42,981
x 100% = 53,13%
91,720
Perhitungan persentase penguapan zat cair pada ruangan kipas
Formula N1 =
90,640 − 29,964
x 100% = 66,94%
90,640
Formula N2 =
92,950 − 27,971
x 100% = 69,90%
92,950
Formula N3 =
94,787 − 26,759
x 100% = 71,76%
94,787
Formula N4 =
97,789 − 25,675
x 100% = 73,74%
97,789
55
Universitas Sumatera Utara
Lampiran 11.Contoh lembar penilaian uji ketahanan wangi
Lembar Penilaian Uji Ketahanan Wangi
Nama
:
Umur
:
Instruksi
: Berikan pendapat anda tentang aroma wangi sedian gel
pengharum ruangan yang di uji, kemudian berilah tanda centang () pada
salah satu kolom (SW/AKW/KW/SKW/TSW) yang tersedia
Penilaian
Sediaan
SW
AKW
KW
SKW
TSW
1%
1,5%
Lampiran
2% 6.Tabel penguapan zat cair pertiga hari selama 30 hari (gram)
2,5%
Keterangan :
Nilai 5 = Sama Wangi (SW)
Nilai 4 = Agak Kurang Wangi (AKW)
Nilai 3 = Kurang Wangi (KW)
Nilai 2 = Sangat Kurang Wangi (SKW)
Nilai 1 = Tidak Sama Wangi (TSW)
56
Universitas Sumatera Utara
Lampiran 12.Hasil uji ketahanan wangi pada ruangan biasa
Minggu 1
Formula
Panelis
N1
N2
N3
N4
1
5
5
5
5
2
4
5
4
3
3
5
5
4
4
4
5
4
5
5
5
5
5
4
5
6
4
4
4
4
7
5
5
4
3
8
5
5
5
4
9
4
4
4
4
10
5
5
5
5
11
5
5
4
5
12
5
5
4
3
13
5
5
4
4
14
5
4
5
5
15
4
5
5
4
16
5
5
4
4
17
4
4
4
3
18
5
5
5
5
19
4
4
4
3
20
5
4
4
4
21
5
4
4
4
22
5
5
5
5
23
4
4
4
3
24
5
5
5
4
25
5
4
4
3
Jumlah
118
115
109
101
57
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Perhitungan hasil uji ketahanan wangi pada ruangan biasa
Minggu 1
FormulaN1
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
118
= 4,72
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(5 − 4,72)2 + (4 − 4,72)2 + (5 − 4,72)2 + (5 − 4,72)2 + .... + (5 − 4,72)2
25
4,97
25
= 0,19
•
S = S2
S=
0,19
S = 0,43
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,72 − (1,96.0,43 / 25 ) ≤ µ ≤ (4,72 − (1.96.0,43 / 25)
P(4,72 − 0,16) ≤ µ ≤ (4,72 + 0,16)
P(4,88 ≤ µ ≤ 4,56)
58
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
5 + 5 + 5 + 4 + .... + 4
25
=
115
= 4,6
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,6) + (5 − 4,6) + (5 − 4,6) + (4 − 4,6) + .... + (4 − 4,6)
=
25
=
6
25
= 0,24
•
S = S2
S = 0,24
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (4,6 − (1,96.0,48 / 25 ) ≤ µ ≤ (4,6 − (1.96.0,48 / 25)
P (4,6 − 0,18) ≤ µ ≤ (4,6 + 0,18)
P (4,78 ≤ µ ≤ 4,42)
59
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 4 + 5 + .... + 4
25
=
109
= 4,36
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,36 ) + (4 − 4,36 ) + (4 − 4,36 ) + (5 − 4,36 ) + .... + (4 − 4,36)
=
25
=
5,6
25
= 0,22
•
S=
S2
S = 0,22
S = 0,46
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,36 − (1,96.0,46 / 25 ) ≤ µ ≤ (4,36 − (1.96.0,46 / 25)
P(4,36 − 0,18) ≤ µ ≤ (4,36 + 0,18)
P(4,54 ≤ µ ≤ 4,18)
60
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
5 + 3 + 4 + 5 + .... + 3
25
=
101
= 4,04
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,04 ) + (3 − 4,04 ) + (4 − 4,04 ) + (5 − 4,04 ) + .... + (3 − 4,04 )
=
25
=
14,25
25
= 0,59
•
S=
S2
S = 0,59
S = 0,76
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,04 − (1,96.0,76 / 25 ) ≤ µ ≤ (4,04 − (1.96.0,76 / 25)
P(4,04 − 0,29) ≤ µ ≤ (4,04 + 0,29)
P(4,33 ≤ µ ≤ 3,75
61
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Minggu 2
Formula
Panelis
N1
N2
N3
N4
1
5
5
4
4
2
4
3
3
3
3
5
4
3
3
4
4
4
4
4
5
5
4
3
3
6
4
3
3
3
7
3
3
4
3
8
5
5
4
4
9
4
4
4
4
10
5
5
4
4
11
3
5
4
3
12
4
5
4
3
13
5
5
4
4
14
5
4
4
4
15
4
5
4
4
16
5
5
4
4
17
4
4
3
3
18
5
5
4
4
19
5
4
4
3
20
5
4
4
4
21
4
4
4
3
22
5
5
4
4
23
4
4
4
3
24
4
5
5
4
25
5
4
4
3
Jumlah
111
108
96
88
62
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Minggu 2
FormulaN1
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
111
= 4,44
25
∑ (Xi − X )
=
2
n
•
S
=
=
2
i
n
(5 − 4,44)2 + (4 − 4,44)2 + (5 − 4,44)2 + (4 − 4,44)2 + .... + (5 − 4,44)2
25
8,8
25
= 0,35
•
S=
S2
S = 0,35
S = 0,59
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (4,44 − (1,96.0,59 / 25 ) ≤ µ ≤ (4,44 − (1.96.0,59 / 25)
P(4,44 − 0,23) ≤ µ ≤ (4,44 + 0,23)
P(4,67 ≤ µ ≤ 4,21)
63
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
108
= 4,32
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,32 ) + (3 − 4,32 ) + (4 − 4,32 ) + (4 − 4,32 ) + .... + (4 − 4,32 )
=
25
=
11,44
25
= 0,45
•
S=
S2
S = 0,45
S = 0,67
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (4,32 − (1,96.0,67 / 25 ) ≤ µ ≤ (4,32 − (1.96.0,67 / 25)
P (4,32 − 0,26) ≤ µ ≤ (4,32 + 0,26)
P(4,58 ≤ µ ≤ 4,06)
64
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
96
= 3,84
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,84 ) + (3 − 3,84 ) + (3 − 3,84 ) + (4 − 3,84 ) + .... + (4 − 3,84 )
=
25
=
5,36
25
= 0,21
•
S=
S2
S = 0,21
S = 0,45
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,84 − (1,96.0,45 / 25 ) ≤ µ ≤ (3,84 − (1.96.0,45 / 25)
P(3,84 − 0,17) ≤ µ ≤ (3,84 + 0,17)
P(4,01 ≤ µ ≤ 3,67)
65
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 5 + 5 + .... + 5
25
=
88
= 3,52
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,52 ) + (3 − 3,52 ) + (3 − 3,52 ) + (4 − 3,52 ) + .... + (4 − 3,52 )
=
25
=
6,24
25
= 0,24
•
S=
S2
S = 0,24
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,52 − (1,96.0,48 / 25 ) ≤ µ ≤ (3,52 − (1.96.0,48 / 25)
P(3,52 − 0,18) ≤ µ ≤ (3,52 + 0,18)
P(3,70 ≤ µ ≤ 3,34)
66
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Minggu 3
Formula
Panelis
N1
N2
N3
N4
1
4
4
4
3
2
3
3
4
3
3
4
4
3
3
4
3
4
3
2
5
4
4
3
3
6
4
4
3
2
7
3
3
4
3
8
3
4
4
3
9
4
4
3
2
10
4
3
2
2
11
3
4
3
2
12
4
3
2
2
13
4
3
2
3
14
3
4
3
2
15
4
3
2
3
16
3
4
3
2
17
4
2
2
3
18
3
3
4
2
19
3
4
3
3
20
3
4
3
2
21
2
3
2
2
22
4
4
3
2
23
3
4
2
3
24
4
3
3
2
25
2
2
2
2
Jumlah
85
87
72
61
67
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
4 + 3 + 4 + 3 + .... + 2
25
=
85
= 3,4
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,4 ) + (3 − 3,4 ) + (4 − 3,4 ) + (3 − 3,4 ) + .... + (2 − 3,4 )
=
25
=
10
25
= 0,4
•
S=
S2
S = 0,4
S = 0,63
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,4 − (1,96.0,63 / 25 ) ≤ µ ≤ (3,4 − (1.96.0,63 / 25)
P(3,4 − 0,24) ≤ µ ≤ (3,4 + 0,24)
P(3,64 ≤ µ ≤ 3,14)
68
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
4 + 3 + 4 + 4 + .... + 2
25
=
87
= 3,48
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,48) + (3 − 3,48) + (4 − 3,48) + (4 − 3,48) + .... + (2 − 3,48)
=
25
=
10,24
25
= 0,4096
•
S=
S2
S = 0,4096
S = 0,64
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,48 − (1,96.0,64 / 25 ) ≤ µ ≤ (3,48 − (1.96.0,64 / 25)
P(3,48 − 0,25) ≤ µ ≤ (3,48 + 0,25)
P(3,73 ≤ µ ≤ 3,23)
69
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
4 + 4 + 3 + 3 + .... + 2
25
=
72
= 2,88
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 2,88) + (4 − 2,88) + (3 − 2,88) + (3 − 2,88) + .... + (2 − 2,88)
=
25
=
12,64
25
= 0,5056
•
S=
S2
S = 0,5056
S = 0,71
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,88 − (1,96.0,71 / 25 ) ≤ µ ≤ (2,88 − (1.96.0,71 / 25)
P(2,88 − 0,27) ≤ µ ≤ (2,88 + 0,27)
P(3,15 ≤ µ ≤ 2,61)
70
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 3 + 2 + .... + 2
25
=
61
= 2,44
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 2,44 ) + (3 − 2,44 ) + (3 − 2,44 ) + (2 − 2,44 ) + .... + (2 − 2,44 )
=
25
=
6,16
25
= 0,2426
•
S=
S2
S = 0,2426
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,44 − (1,96.0,49 / 25 ) ≤ µ ≤ (2,44 − (1.96.0,49 / 25)
P(2,44 − 0,19) ≤ µ ≤ (2,44 + 0,19)
P(2,63 ≤ µ ≤ 2,25)
71
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
Minggu 4
Formula
Panelis
N1
N2
N3
N4
1
2
2
1
1
2
1
1
2
1
3
2
2
2
2
4
1
1
1
1
5
2
1
2
1
6
2
2
1
2
7
2
1
2
2
8
1
1
1
1
9
2
2
1
1
10
2
1
1
1
11
3
2
2
1
12
2
1
2
1
13
2
1
1
1
14
1
1
2
2
15
2
1
1
1
16
3
2
2
1
17
2
1
1
1
18
2
1
1
1
19
1
1
2
2
20
3
2
1
1
21
2
1
2
1
22
2
2
1
1
23
1
1
2
1
24
2
1
1
2
25
2
2
1
1
Jumlah
47
34
36
31
72
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 1 + .... + 2
25
=
47
= 1,88
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
2 − 1,88) + (1 − 1,88) + (2 − 1,88) + (1 − 1,88) + .... + (2 − 1,88)
=
25
=
8,64
25
= 0,3456
•
S=
S2
S = 0,3456
S = 0,58
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,88 − (1,96.0,58 / 25 ) ≤ µ ≤ (1,88 − (1.96.0,58 / 25)
P(1,88 − 0,22) ≤ µ ≤ (1,88 + 0,22)
P(2,1 ≤ µ ≤ 1,66)
73
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 1 + .... + 2
25
=
34
= 1,36
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
2 − 1,36 ) + (1 − 1,36 ) + (2 − 1,36 ) + (1 − 1,36 ) + .... + (2 − 1,36 )
=
25
=
5,63
25
= 0,2252
•
S=
S2
S = 0,2252
S = 0,47
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,36 − (1,96.0,47 / 25 ) ≤ µ ≤ (1,36 − (1.96.0,47 / 25)
P(1,36 − 0,18) ≤ µ ≤ (1,36 + 0,18)
P(1,54 ≤ µ ≤ 1,18)
74
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
1 + 2 + 2 + 1 + .... + 1
25
=
36
= 1,44
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
1 − 1,44 ) + (2 − 1,44 ) + (2 − 1,44 ) + (1 − 1,44 ) + .... + (1 − 1,44 )
=
25
=
8,87
25
= 0,35
•
S=
S2
S = 0,35
S = 0,59
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,44 − (1,96.0,59 / 25 ) ≤ µ ≤ (1,44 − (1.96.0,59 / 25)
P (1,44 − 0,23) ≤ µ ≤ (1,44 + 0,23)
P (1,67 ≤ µ ≤ 1,21)
75
Universitas Sumatera Utara
Lampiran 12.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 2 + 1 + .... + 1
25
=
31
= 1,24
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
1 − 1,24 ) + (1 − 1,24 ) + (2 − 1,24 ) + (1 − 1,24 ) + .... + (1 − 1,24 )
=
25
=
4,56
25
= 0,1824
•
S=
S2
S = 0,1824
S = 0,42
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,24 − (1,96.0,42 / 25 ) ≤ µ ≤ (1,24 − (1.96.0,42 / 25)
P(1,24 − 0,16) ≤ µ ≤ (1,24 + 0,16)
P(1,4 ≤ µ ≤ 1,08)
76
Universitas Sumatera Utara
Lampiran 13.Hasil uji ketahanan wangi pada ruangan AC
Minggu 1
Formula
Panelis
N1
N2
N3
N4
1
5
5
4
3
2
5
4
3
2
3
5
4
3
3
4
4
5
4
3
5
5
4
3
3
6
4
3
3
3
7
5
4
4
3
8
5
5
3
4
9
4
4
4
3
10
3
3
4
4
11
5
4
3
3
12
4
4
4
3
13
5
5
3
4
14
5
4
4
3
15
4
5
3
4
16
5
5
4
4
17
4
4
3
2
18
5
5
4
4
19
4
4
4
3
20
5
5
3
4
21
4
4
4
3
22
5
4
4
3
23
4
5
2
3
24
3
3
3
2
25
5
4
4
3
Jumlah
112
106
87
79
77
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
5 + 5 + 5 + 4 + .... + 5
25
=
112
= 4,48
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,48) + (5 − 4,48) + (5 − 4,48) + (4 − 4,48) + .... + (5 − 4,48)
=
25
=
10,24
25
= 0,4096
•
S=
S2
S = 0,4096
S = 0,64
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,48 − (1,96.0,64 / 25 ) ≤ µ ≤ (4,48 − (1.96.0,64 / 25)
P(4,48 − 0,25) ≤ µ ≤ (4,48 + 0,25)
P(4,73 ≤ µ ≤ 4,23)
78
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
5 + 4 + 4 + 5 + .... + 4
25
=
106
= 4,24
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
5 − 4,24 ) + (4 − 4,24 ) + (4 − 4,24 ) + (5 − 4,24 ) + .... + (4 − 4,24 )
=
25
=
10,56
25
= 0,4224
•
S=
S2
S = 0,4224
S = 0,64
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(4,24 − (1,96.0,64 / 25 ) ≤ µ ≤ (4,24 − (1.96.0,64 / 25)
P(4,24 − 0,25) ≤ µ ≤ (4,24 + 0,25)
P(4,49 ≤ µ ≤ 3,99)
79
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
4 + 3 + 3 + 4 + .... + 4
25
=
89
= 3,56
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,56 ) + (3 − 3,56 ) + (3 − 3,56 ) + (4 − 3,56 ) + .... + (4 − 3,56 )
=
25
=
6,16
25
= 0,2464
•
S=
S2
S = 0,2426
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,56 − (1,96.0,49 / 25 ) ≤ µ ≤ (3,56 − (1.96.0,49 / 25)
P(3,56 − 0,19) ≤ µ ≤ (3,56 + 0,19)
P(3,75 ≤ µ ≤ 3,37)
80
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
3 + 2 + 3 + 3 + .... + 3
25
=
79
= 3,16
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
4 − 3,56 ) + (3 − 3,56 ) + (3 − 3,56 ) + (4 − 3,56 ) + .... + (4 − 3,56 )
=
25
=
9,36
25
= 0,3744
•
S=
S2
S = 0,3744
S = 0,61
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,16 − (1,96.0,61 / 25 ) ≤ µ ≤ (3,16 − (1.96.0,61 / 25)
P(3,16 − 0,23) ≤ µ ≤ (3,16 + 0,23)
P(3,39 ≤ µ ≤ 2,93)
81
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Minggu 2
Formula
Panelis
N1
N2
N3
N4
1
3
3
3
2
2
3
3
3
2
3
4
3
2
2
4
3
2
2
1
5
2
2
2
1
6
4
3
3
3
7
3
4
4
3
8
3
3
3
2
9
4
4
4
3
10
3
3
4
2
11
3
3
3
3
12
4
3
3
2
13
3
2
2
1
14
2
2
2
1
15
4
3
3
2
16
3
2
2
1
17
4
3
3
2
18
3
3
2
2
19
2
2
2
2
20
3
3
3
2
21
3
3
2
3
22
3
3
2
2
23
2
2
2
2
24
3
3
3
2
25
2
2
2
2
Jumlah
76
69
66
50
82
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 4 + 3 + .... + 2
25
=
76
= 3,04
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 3,04 ) + (3 − 3,04 ) + (4 − 3,04 ) + (3 − 3,04 ) + .... + (2 − 3,04 )
=
25
=
10,96
25
= 0,4384
•
S = S2
S = 0,4384
S = 0,66
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,04 − (1,96.0,66 / 25 ) ≤ µ ≤ (3,04 − (1.96.0,66 / 25)
P(3,04 − 0,25) ≤ µ ≤ (3,04 + 0,25)
P(3,29 ≤ µ ≤ 2,79)
83
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 3 + 2 + .... + 2
25
=
69
= 2,76
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 3,04 ) + (3 − 3,04 ) + (3 − 3,04 ) + (2 − 3,04 ) + .... + (2 − 3,04 )
=
25
=
8,56
25
= 0,3424
•
S = S2
S = 0,3424
S = 0,58
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,76 − (1,96.0,58 / 25 ) ≤ µ ≤ (2,76 − (1.96.0,58 / 25)
P(2,76 − 0,22) ≤ µ ≤ (2,76 + 0,22)
P(2,98 ≤ µ ≤ 2,54)
84
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 2 + 2 + .... + 2
25
=
66
= 2,64
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 2,64 ) + (3 − 2,64 ) + (2 − 2,64 ) + (2 − 2,64 ) + .... + (2 − 2,64 )
=
25
=
11,76
25
= 0,4704
•
S = S2
S = 0,4704
S = 0,68
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,64 − (1,96.0,68 / 25 ) ≤ µ ≤ (2,64 − (1.96.0,68 / 25)
P(2,64 − 0,26) ≤ µ ≤ (2,64 + 0,26)
P(2,9 ≤ µ ≤ 2,38)
85
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
2 + 2 + 2 + 1 + .... + 2
25
=
50
=2
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
3 − 2 ) + (3 − 2 ) + (2 − 2 ) + (2 − 2 ) + .... + (2 − 2 )
=
25
=
2
25
= 0,08
•
S = S2
S = 0,08
S = 0,28
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (2 − (1,96.0,28 / 25 ) ≤ µ ≤ (2 − (1.96.0,28 / 25)
P (2 − 0,1) ≤ µ ≤ (2 + 0,1)
P(2,1 ≤ µ ≤ 1,9)
86
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Minggu 3
Formula
Panelis
N1
N2
N3
N4
1
2
2
1
1
2
3
3
2
1
3
2
2
2
2
4
3
2
1
1
5
2
2
2
1
6
2
3
2
2
7
3
2
2
1
8
3
3
2
2
9
2
2
2
1
10
3
3
2
2
11
3
2
2
1
12
2
3
3
2
13
3
2
2
1
14
2
2
2
1
15
2
3
2
2
16
3
2
2
1
17
2
3
1
2
18
3
3
2
2
19
2
2
2
2
20
3
3
2
1
21
2
1
2
1
22
3
3
2
2
23
2
2
2
2
24
3
2
1
1
25
2
1
1
1
Jumlah
62
58
46
36
87
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
2 + 3 + 2 + 3 + .... + 2
25
=
62
= 2,48
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
2 − 2,48) + (3 − 2,48) + (2 − 2,48) + (3 − 2,48) + .... + (2 − 2,48)
=
25
=
6,24
25
= 0,2496
•
S = S2
S = 0,2496
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,48 − (1,96.0,49 / 25 ) ≤ µ ≤ (2,48 − (1.96.0,49 / 25)
P(2,48 − 0,19) ≤ µ ≤ (2,48 + 0,19)
P(2,67 ≤ µ ≤ 2,29)
88
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
2 + 3 + 2 + 2 + .... + 1
25
=
58
= 2,32
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
2 − 2,32) + (3 − 2,32) + (2 − 2,32) + (2 − 2,32) + .... + (1 − 2,32 )
=
25
=
10,745
25
= 0,4298
•
S = S2
S = 0,4298
S = 0,65
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,32 − (1,96.0,65 / 25 ) ≤ µ ≤ (2,32 − (1.96.0,65 / 25)
P(2,32 − 0,25) ≤ µ ≤ (2,32 + 0,25)
P(2,57 ≤ µ ≤ 2,07)
89
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
1 + 2 + 2 + 1 + .... + 1
25
=
46
= 1,84
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
1 − 1,84) + (2 − 1,84 ) + (2 − 1,84 ) + (1 − 1,84 ) + .... + (1 − 1,84 )
=
25
=
5,36
25
= 0,2144
•
S = S2
S = 0,2144
S = 0,46
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,84 − (1,96.0,46 / 25 ) ≤ µ ≤ (1,84 − (1.96.0,46 / 25)
P (1,84 − 0,18) ≤ µ ≤ (1,84 + 0,18)
P (2,02 ≤ µ ≤ 1,66)
90
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 2 + 1 + .... + 1
25
=
36
= 1,44
25
∑ (Xi − X )
=
2
n
•
S
2
i
n
2
2
2
2
2
(
1 − 1,44 ) + (1 − 1,44 ) + (2 − 1,44 ) + (1 − 1,44 ) + .... + (1 − 1,44 )
=
25
=
6,61
25
= 0,2464
•
S = S2
S = 0,2464
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,44 − (1,96.0,49 / 25 ) ≤ µ ≤ (1,44 − (1.96.0,49 / 25)
P(1,44 − 0,19) ≤ µ ≤ (1,44 + 0,19)
P(1,63 ≤ µ ≤ 1,25)
91
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Minggu 4
Formula
Panelis
N1
N2
N3
N4
1
2
2
1
1
2
1
1
1
1
3
1
1
2
1
4
2
2
1
1
5
1
2
2
1
6
2
1
1
1
7
1
1
2
1
8
2
1
1
1
9
1
2
2
1
10
2
1
1
1
11
1
1
2
1
12
2
1
1
1
13
1
2
2
1
14
2
1
1
1
15
1
1
1
2
16
1
2
1
1
17
1
1
1
2
18
2
1
2
2
19
2
2
2
2
20
1
1
1
1
21
1
1
2
1
22
2
1
2
2
23
1
2
1
1
24
2
1
1
1
25
2
1
1
1
Jumlah
37
33
35
30
92
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Formula N1
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 1 + 2 + .... + 2
25
=
37
= 1,48
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,48)2 + (1 − 1,48)2 + (1 − 1,48)2 + (2 − 1,48)2 + .... + (2 − 1,48)2
25
6,24
25
= 0,2496
•
S = S2
S = 0,2496
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,48 − (1,96.0,49 / 25 ) ≤ µ ≤ (1,48 − (1.96.0,49 / 25)
P (1,48 − 0,19) ≤ µ ≤ (1,48 + 0,19)
P (1,67 ≤ µ ≤ 1,29)
93
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Formula N2
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 1 + 2 + .... + 1
25
=
33
= 1,32
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,32)2 + (1 − 1,32)2 + (1 − 1,32)2 + (2 − 1,32)2 + .... + (1 − 1,32)2
25
5,44
25
= 0,2176
•
S = S2
S = 0,2176
S = 0,46
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,32 − (1,96.0,46 / 25 ) ≤ µ ≤ (1,32 − (1.96.0,46 / 25)
P (1,32 − 0,18) ≤ µ ≤ (1,32 + 0,18)
P(1,5 ≤ µ ≤ 1,14)
94
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Formula N3
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 2 + 1 + .... + 1
25
=
35
= 1,4
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(1 − 1,4)2 + (1 − 1,4)2 + (2 − 1,4)2 + (1 − 1,4)2 + .... + (1 − 1,4)2
25
6
25
= 0,24
•
S = S2
S = 0,24
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,4 − (1,96.0,48 / 25 ) ≤ µ ≤ (1,4 − (1.96.0,48 / 25)
P(1,4 − 0,18) ≤ µ ≤ (1,4 + 0,18)
P(1,58 ≤ µ ≤ 1,22)
95
Universitas Sumatera Utara
Lampiran 13.(Lanjutan)
Formula N4
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 1 + 1 + .... + 1
25
=
33
= 1,2
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(1 − 1,2)2 + (1 − 1,2)2 + (1 − 1,2)2 + (1 − 1,2)2 + .... + (1 − 1,2)2
25
4
25
= 0,16
•
S = S2
S = 0,16
S = 0,4
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,2 − (1,96.0,4 / 25 ) ≤ µ ≤ (1,2 − (1.96.0,4 / 25)
P(1,2 − 0,18) ≤ µ ≤ (1,2 + 0,18)
P(1,35 ≤ µ ≤ 1,05)
96
Universitas Sumatera Utara
Lampiran 14.Hasil uji ketahanan wangi pada ruangan kipas
Minggu 1
Formula
Panelis
N1
N2
N3
N4
1
4
4
3
2
2
3
4
3
3
3
4
3
4
3
4
3
3
3
2
5
4
4
3
3
6
4
3
3
3
7
3
4
4
3
8
3
3
3
3
9
4
4
4
3
10
3
3
4
3
11
3
3
3
3
12
4
3
3
3
13
3
3
2
3
14
3
3
2
3
15
4
3
3
2
16
3
3
2
3
17
4
3
3
4
18
3
3
3
2
19
3
3
3
3
20
3
3
3
2
21
4
3
4
4
22
3
3
3
3
23
4
4
3
3
24
3
3
3
4
25
4
3
3
4
Jumlah
86
81
77
74
97
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
4 + 3 + 4 + 3 + .... + 4
25
=
86
= 3,44
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(4 − 3,44)2 + (3 − 3,44)2 + (4 − 3,44)2 + (3 − 3,44)2 + .... + (4 − 3,44)2
25
6,16
25
= 0,2464
•
S = S2
S = 0,2464
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (3,44 − (1,96.0,49 / 25 ) ≤ µ ≤ (3,44 − (1.96.0,49 / 25)
P (3,44 − 0,19) ≤ µ ≤ (3,44 + 0,19)
P(3,63 ≤ µ ≤ 3,25)
98
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
4 + 4 + 3 + 3 + .... + 3
25
=
81
= 3,24
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(4 − 3,24)2 + (4 − 3,24)2 + (3 − 3,24)2 + (3 − 3,24)2 + .... + (3 − 3,24)2
25
4,56
25
= 0,1824
•
S = S2
S = 0,1824
S = 0,42
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,24 − (1,96.0,42 / 25 ) ≤ µ ≤ (3,24 − (1.96.0,42 / 25)
P(3,24 − 0,16) ≤ µ ≤ (3,24 + 0,16)
P(3,4 ≤ µ ≤ 3,08)
99
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
3 + 3 + 4 + 3 + .... + 3
25
=
77
= 3,08
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(3 − 3,08)2 + (3 − 3,08)2 + (4 − 3,08)2 + (3 − 3,08)2 + .... + (3 − 3,08)2
25
11,2256
25
= 0,449
•
S = S2
S = 0,449
S = 0,67
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(3,08 − (1,96.0,67 / 25 ) ≤ µ ≤ (3,08 − (1.96.0,67 / 25)
P(3,08 − 0,26) ≤ µ ≤ (3,08 + 0,26)
P(3,34 ≤ µ ≤ 2,82)
100
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
2 + 3 + 3 + 3 + .... + 2
25
=
74
= 2,96
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 2,96)2 + (3 − 2,96)2 + (3 − 2,96)2 + (3 − 2,96)2 + .... + (2 − 2,96)2
25
8,96
25
= 0,3584
•
S = S2
S = 0,3584
S = 0,59
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (2,96 − (1,96.0,59 / 25 ) ≤ µ ≤ (2,96 − (1.96.0,59 / 25)
P(2,96 − 0,23) ≤ µ ≤ (2,96 + 0,23)
P(3,19 ≤ µ ≤ 2,73)
101
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
Minggu 2
Formula
Panelis
N1
N2
N3
N4
1
3
2
2
2
2
2
3
2
1
3
2
2
2
2
4
3
3
2
2
5
2
2
2
2
6
3
3
2
2
7
2
2
2
1
8
3
3
2
2
9
2
2
2
1
10
3
2
2
2
11
2
2
2
1
12
2
3
3
2
13
3
2
2
2
14
2
2
2
1
15
2
3
2
2
16
3
2
2
2
17
2
3
2
2
18
3
2
2
2
19
2
2
2
2
20
3
3
2
2
21
2
2
2
1
22
3
3
2
2
23
3
2
2
2
24
2
2
2
1
25
2
2
2
1
Jumlah
61
59
51
42
102
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
3 + 2 + 2 + 3 + .... + 2
25
=
61
= 2,44
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(3 − 2,44)2 + (2 − 2,44)2 + (2 − 2,44)2 + (3 − 2,44)2 + .... + (2 − 2,44)2
25
6,16
25
= 0,2464
•
S = S2
S = 0,2464
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (2,44 − (1,96.0,49 / 25 ) ≤ µ ≤ (2,44 − (1.96.0,49 / 25)
P (2,44 − 0,19) ≤ µ ≤ (2,44 + 0,19)
P(2,63 ≤ µ ≤ 2,25)
103
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
2 + 3 + 2 + 3 + .... + 2
25
=
59
= 2,36
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 2,36)2 + (3 − 2,36)2 + (2 − 2,36)2 + (3 − 2,36)2 + .... + (2 − 2,36)2
25
5,76
25
= 0,2304
•
S = S2
S = 0,2304
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (2,36 − (1,96.0,48 / 25 ) ≤ µ ≤ (2,36 − (1.96.0,48 / 25)
P (2,36 − 0,18) ≤ µ ≤ (2,36 + 0,18)
P(2,54 ≤ µ ≤ 2,18)
104
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
2 + 2 + 2 + 2 + .... + 2
25
=
51
= 2,04
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 2,04)2 + (2 − 2,04)2 + (2 − 2,04)2 + (2 − 2,04)2 + .... + (2 − 2,04)2
25
0,96
25
= 0,0384
•
S = S2
S = 0,0384
S = 0,19
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(2,04 − (1,96.0,19 / 25 ) ≤ µ ≤ (2,04 − (1.96.0,19 / 25)
P(2,04 − 0,074) ≤ µ ≤ (2,04 + 0,074)
P(2,11 ≤ µ ≤ 1,96)
105
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 2 + .... + 1
25
=
42
= 1,68
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,68)2 + (1 − 1,68)2 + (2 − 1,68)2 + (2 − 1,68)2 + .... + (1 − 1,68)2
25
5,44
25
= 0,2176
•
S = S2
S = 0,2176
S = 0,46
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,68 − (1,96.0,46 / 25 ) ≤ µ ≤ (1,68 − (1.96.0,46 / 25)
P(1,68 − 0,18) ≤ µ ≤ (1,68 + 0,18)
P(1,86 ≤ µ ≤ 1,5)
106
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
Minggu 3
Formula
Panelis
N1
N2
N3
N4
1
2
2
1
1
2
1
1
1
1
3
2
2
1
2
4
2
1
1
1
5
1
2
2
1
6
2
1
1
1
7
2
2
1
1
8
2
1
1
1
9
1
1
2
1
10
1
1
1
1
11
1
1
2
1
12
2
1
1
1
13
1
2
2
1
14
2
1
1
1
15
1
1
1
2
16
1
2
1
1
17
2
1
1
2
18
2
1
2
2
19
2
2
2
1
20
1
1
1
1
21
1
2
1
2
22
2
1
1
1
23
1
2
1
1
24
1
1
1
1
25
1
1
1
1
Jumlah
37
34
31
30
107
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN1
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 2 + .... + 1
25
=
37
= 1,48
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,48)2 + (1 − 1,48)2 + (2 − 1,48)2 + (2 − 1,48)2 + .... + (1 − 1,48)2
25
6,24
25
= 0,2496
•
S = S2
S = 0,2496
S = 0,49
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,48 − (1,96.0,49 / 25 ) ≤ µ ≤ (1,48 − (1.96.0,49 / 25)
P(1,48 − 0,19) ≤ µ ≤ (1,48 + 0,19)
P(1,67 ≤ µ ≤ 1,29)
108
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN2
∑ = Xi
X =
n
•
i
n
=
2 + 1 + 2 + 1 + .... + 1
25
=
34
= 1,36
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(2 − 1,36)2 + (1 − 1,48)2 + (2 − 1,48)2 + (1 − 1,48)2 + .... + (1 − 1,48)2
25
5,76
25
= 0,2304
•
S = S2
S = 0,2304
S = 0,48
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,36 − (1,96.0,48 / 25 ) ≤ µ ≤ (1,36 − (1.96.0,48 / 25)
P (1,36 − 0,18) ≤ µ ≤ (1,36 + 0,18)
P(1,54 ≤ µ ≤ 1,18)
109
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN3
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 1 + 1 + .... + 1
25
=
31
= 1,24
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(1 − 1,24)2 + (1 − 1,24)2 + (1 − 1,24)2 + (1 − 1,24)2 + .... + (1 − 1,24)2
25
4,56
25
= 0,1824
•
S = S2
S = 0,1824
S = 0,42
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P(1,24 − (1,96.0,42 / 25 ) ≤ µ ≤ (1,24 − (1.96.0,42 / 25)
P(1,24 − 0,16) ≤ µ ≤ (1,24 + 0,16)
P(1,4 ≤ µ ≤ 1,08)
110
Universitas Sumatera Utara
Lampiran 14.(Lanjutan)
FormulaN4
∑ = Xi
X =
n
•
i
n
=
1 + 1 + 2 + 1 + .... + 1
25
=
30
= 1,2
25
∑ (Xi − X )
=
2
n
•
S2
=
=
i
n
(1 − 1,2)2 + (1 − 1,2)2 + (2 − 1,2)2 + (1 − 1,2)2 + .... + (1 − 1,2)2
25
4
25
= 0,16
•
S=
S2
S = 0,16
S = 0,4
•
P( X − (1,96.S / n ) ≤ µ ≤ ( X − (1,96.S / n )
P (1,2 − (1,96.0,4 / 25 ) ≤ µ ≤ (1,2 − (1.96.0,4 / 25)
P(1,2 − 0,16) ≤ µ ≤ (1,2 + 0,16)
P(1,35 ≤ µ ≤ 1,05)
111
Universitas Sumatera Utara