PENGEMBANGAN SISTEM MONITORING GELOMBANG (1)

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

PENGEMBANGAN SISTEM MONITORING GELOMBANG
IONOSFER TERKAIT GEMPA BUMI MENGGUNAKAN
DATA GPS (GPSIONOQUAKE)
(DEVELOPMENT OF MONITORING SYSTEM OF
IONOSPHERIC WAVES ASSOCIATED WITH EARTHQUAKE
USING GPS DATA (GPSIONOQUAKE))
Buldan Muslim1), Joni Effendi2), Edvin Aldrian3), Fakhrizal3), Bambang Sunardi3) dan
Angga3)
1)

Pusat Sains Antariksa, LAPAN; 2) Badan Informasi Geospasial; 3) Puslitbang BMKG
e-mail: mbuldan@gmail.com
ABSTRAK
Gelombang gravitasi atmosfer dan infrasonik dapat ditimbulkan oleh aktivitas seismik

seperti gempa bumi dan tsunami. Jika tsunami dan gempa bumi cukup kuat, gelombanggelombang tersebut dapat menjalar sampai ketinggian ionosfer sehingga fluktuasi ionosfer

dalam orde gelombang gravitasi atmosfer dan infrasonik dapat muncul di ionosfer. Sistem
monitoring gelombang ionosfer yang terkait dengan gempa bumi dari data GPS
(GPSIONOQUAKE) telah dikembangkan dari jaringan stasiun pengamatan GPS di Indonesia
dan sekitarnya. Menggunakan sliding Fast Fourier Transform (SFFT) pada data TEC
differensial yang diestimasi dari data fase gelombang pembawa sinyal GPS, fluktuasi tidak
teratur dalam orde beberapa puluh detik sampai beberapa puluh menit dapat dideteksi di
ionosfer dengan amplitudo rata-rata yang bervariasi dalam orde kurang dari 0,01 TECU. Pada
saat tertentu fluktuasi ionosfer menjadi lebih teratur dengan amplitudo mencapai lebih besar
dari 0,01 TECU. Pengujian metodologi menggunakan data GPS pada hari terjadinya gempa
bumi Aceh 26 Desember 2004 menunjukkan bahwa gelombang ionosfer dapat dideteksi
beberapa menit sampai beberapa jam setelah gempa bumi dan tsunami yang tergantung pada
jarak titik pengamatan ionosfer dari episenter gempa bumi.
Kata kunci: GPS, TEC, ionosfer, gempa bumi, gelombang, gravitasi, infrasonik.
ABSTRACT
Atmospheric gravity and infrasonic waves can be exited oleh seismic activities such as
earthquake and tsunami. If the tsunami and earthquake are strong enough, the waves can
Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014


12

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

propagate to a height of the ionosphere so that fluctuations in the ionosphere in the period
order of atmospheric gravity and infrasonic waves can appear in the ionosphere. Monitoring
system of ionosphere waves

associated

with the earthquake from GPS data

(GPSIONOQUAKE) has been developed from a network of GPS observation stations. Using
sliding Fast Fourier Transform (SFFT) on differential TEC data estimated from the carrier
phase data of the GPS signal, ionospheric irregular fluctuations in period order from seconds
to tens of minutes can be detected in the ionosphere with an average amplitude which varies
in the order of less than 0,01 TECU. At a certain moment the ionospheric fluctuations becomes

more regular and have greater amplitude more than 0,01 TECU. The methodology examining
using the GPS data during the occurrence of the December 26, 2004 Aceh earthquake shown
that the ionosphere waves can be detected a few minutes to a few hours after the earthquake
and tsunami that depends on the distance of the observation point of the ionosphere from the
earthquake epicenter.
Keywords: GPS, TEC, ionosphere, wave, infrasonic, gravity, earthquake, tsunami.
1. PENDAHULUAN
Indonesia terletak di daerah pertemuan 3 lempeng tektonik, yaitu lempeng Indo-Australia,
Eurasia dan lempeng Pasific. Lempeng Indo-Australia bertemu dengan lempeng Eurasia di
lepas pantai Sumatra, Jawa dan Nusa Tenggara, dan bertemu dengan lempeng Pasific di utara
Irian dan Maluku utara. Di sekitar lokasi pertemuan lempeng ini akumulasi energi tabrakan
terkumpul sampai suatu titik dimana lapisan bumi tidak lagi sanggup menahan tumpukan
energi sehingga terjadi pelepasan energi. Pelepasan energi tersebut menimbulkan bencana
berupa gempa bumi dan tsunami.
Untuk mengurangi dampak gempa bumi di laut yang menimbulkan tsunami, telah
dikembangkan sistem peringatan dini tsunami oleh Badan Meteorologi dan Geofisika (BMKG)
bekerjasama dengan instansi luar negeri di Jerman. Sistem peringatan dini tsunami tersebut
dikenal dengan German-Indonesia Tsunami Early Warning System (GITEWS). Sistem
peringatan dini tsunami bekerja berdasakan model hubungan litosfer dan hidrosfer. GITEWS
telah selesai dibangun dan telah diserahkan secara penuh oleh Jerman kepada Indonesia pada

31 Maret 2011 (GITEWS, 2014).
Bagaimanapun juga peringatan dini tsunami perlu diklarifikasi melalui pemantauan
gelombang laut dari posisi yang diukur dengan Global Positioning System (GPS) yang dikenal
dengan buoy. Tetapi buoy ini banyak mengalami kendala, baik dalam sistem keamanan
peralatan di laut lepas yang lemah maupun dalam menghadapi gangguan dari alam. Maka
Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

13

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

diperlukan sistem klarifikasi dengan metode lainya yang lebih murah dan lebih efektif.
Occipinthi et al. (2008a) menyarankan agar data total electron content yang diturunkan
dari data GPS yang dapat disingkat dengan TEC GPS (bukan posisi alat penerima GPS yang
terletak di laut) dapat segera diintegrasikan dengan sistem peringatan dini yang sudah ada.

Berbeda dengan buoy, sistem pendukung peringatan dini tsunami berbasis TEC GPS tidak
memerlukan stasiun GPS di laut lepas, tetapi cukup menggunakan jaringan pengamatan GPS
di daratan yang sudah ada karena satu alat penerima GPS dapat mengamati beberapa titik
ionosfer yang tersebar di sekitar stasiun GPS sampai lebih dari ratusan km sehingga bisa
menjangkau pengamatan ionosfer di atas laut.
Gempa bumi dan tsunami yang besar dapat menimbulkan gelombang gravitasi atmosfer
dan gelombang infrasonik yang menjalar sampai ketinggian ionosfer sehingga ionosfer
berfluktuasi dalam orde periode gelombang gravitasi atmosfer dan infrasonik. Jika informasi
gelombang di ionosfer yang terkait dengan gempa bumi dan tsunami dapat diketahui secara
real time, peringatan dini tsunami dan informasi gempa bumi dapat diklarifikasi dengan
informasi gelombang ionosfer.
Maka dari itu LAPAN, BMKG dan Badan Informasi Geospasial (BIG) telah mencoba
bekerjasama mengoptimalkan sumber daya yang ada untuk mengembangkan sistem
monitoring gelombang ionosfer dari jaringan stasiun pengamatan GPS (yang selanjutnya kami
namakan secara singkat dengan GPSIONOQUIKE). Sistem tersebut tidak dimaksudkan untuk
menggantikan GITEWS yang sudah ada melainkan untuk melengkapi dan memperkuat sistem
yang sudah ada. Jika GPSIONOQUAKE dapat terwujud dan bisa diimplementasikan, maka
harapan besar dari masyarakat bisa dipenuhi.
Secara teknis kerjasama pengembangan GPSIONOQUAKE oleh LAPAN, BIG dan
BNMKG sudah berjalan sejak 2014. Makalah ini menjelaskan status GPSIONOQUAKE yang

sedang dikembangkan dan arah pengembangan selanjutnya untuk memperkuat sistem
peringatan dini tsunami di Indonesia.
2. DASAR TEORI
Pengaruh gempa bumi terhadap ionosfer melalui kopling litosfer-atmosfer-ionosfer.
Lognonne et al. (2006) menjelaskan bahwa gelombang seismik dengan amplitudo terbesar di
permukaan bumi merupakan gelombang permukaan yang salah satunya adalah gelombang
Rayleigh. Gelombang seismik menjalar sepanjang permukaan bumi melalui kerak dan mantel
bagian atas dengan kecepatan antara 3 – 4 km / detik. Gelombang tersebut dapat menghasilkan
gelombang atmosfer yang menjalar ke atas dengan periode lebih besar dari 10 detik.
Gelombang infrasonik tersebut menjalar di atmosfer dan ketika sampai di ionosfer, energi
Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

14

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan


gelombangnya ditransfer ke ionosfer melalui tumbukan dengan ion dan elektron sehingga
dapat memunculkan gelombang infrasonik di ionosfer. Gelombang infrasonik tersebut dapat
dideteksi dengan beberapa peralatan pengamatan ionosfer termasuk GPS.
Adapun teori kopling laut-atmosfer-ionosfer saat terjadi tsunami telah dijelaskan oleh
Occhipinti et al. (2008b) yang secara ringkas dapat disimpulkan bahwa:
a. Berdasarkan analisis teori kopling laut-atmosfer-ionosfer melalui gelombang gravitasi
atmosfer internal yang ditimbulkan oleh tsunami menunjukkan bahwa secara kuantitatif
tanda-tanda pengaruh tsunami di ionosfer dapat dihitung.
b. Dan kebetulan didukung dengan komponen medan magnet di daerah ekuatorial dan
lintang rendah yang mendekati horisontal, arah kecepatan partikel netral saat terjadi
gelombang gravitasi sejajar dengan medan magnet bumi sehingga dapat menjalar
sampai ionosfer lebih tinggi dibandingkan propagasi gelombang gravitasi atmosfer di
daerah lintang tengah dan tinggi.
c. Perubahan kerapatan elektron ionosfer yang disebabkan oleh gelombang gravitasi
atmosfer internal melalui kopling partikel netral dan terionisasi di ionosfer dapat
dideteksi melalui pengamatan TEC yang diturunkan dari data GPS.
d. Di samping itu propagasi gelombang gravitasi akustik juga telah dikaji secara teoritis
yang menunjukkan bahwa gelombang gravitasi akustik dapat dideteksi di ionosfer
dengan kecepatan yang jauh lebih besar dari kecepatan gelombang gravitasi atmosfer

internal.
3. DASAR EKSPERIMEN
Berdasarkan data TEC GPS, pengaruh tsunami pada ionosfer melalui beberapa gelombang
gravitasi atmosfer dan akustik telah banyak ditemukan untuk kasus gempa bumi besar seperti
kasus Aceh 26 Desember 2004 dan Tohoku 11 Maret 2011.
Choosakul et al. (2009) telah menemukan osilasi periodik sekitar 4 menit dari data TEC
yang diturunkan dari data GPS SAMP (Sampali, Medan) dan PHKT (Phuket, Thailand) setelah
gempa bumi dan tsunami di Aceh 26 Desember 2004. Dari data GPS diketahui osilasi sekitar
4 menit di ionosfer memanjang antara 4oLU sampai 15oLU yang mirip dengan luas retakan
gempa bumi Aceh. Choosakul et al. (2009) telah mengaitkan osilasi ionosfer ini sebagai
gelombang akustik di ionosfer yang disebabkan oleh gempa bumi.
Menggunakan beberapa peralatan yang berbeda, Hao et al., (2012) telah mengkonfirmasi
bahwa gelombang ionosfer dengan periode sekitar 3-5 menit disebabkan oleh gelombang
infrasonik yang disebabkan oleh gelombang Rayleigh yang bersumber dari gempa bumi
Tohoku sekitar 10 menit sebelumnya. Kecepatan fase gangguan ionosfer tersebut diestimasi
Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

15


ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

sekitar 3,6 km/detik yang setara dengan kecepatan gelombang Rayleigh.
4. PERALATAN
Gambar 4-1 menjelaskan GPSIONOQUAKE yang terdiri dari alat penerima GPS milik
Badan Informasi Geospasial (BIG) di Cibinong. Sekitar 9 stasiun GPS BIG dapat diakses setiap
1 jam dan dua stasiun GPS dapat diakses setiap 1 menit.

Gambar 4-1: Sistem monitoring gelombang ionosfer menggunakan jaringan stasiun
pengamatan GPS Badan Informasi Geospasial di Cibinong.
Dua stasiun GPS telah diset untuk pengamatan setiap 1 detik dan data disimpan setiap 1
menit satu berkas (file). Server TEC di BIG digunakan untuk menyimpan data GPS dengan
format Receiver Indepemdent Exchange Format (RINEX) sementara sebelum digunakan untuk
penentuan TEC. PC monitor dan kontrol di LAPAN Bandung digunakan untuk monitor
operasional pengamatan TEC GPS yang beroperasi di Cibinong melalui perangkat lunak Tiem
Viewer. Hasil pengamatan TEC GPS juga dapat diunduh oleh BMKG sehingga hasil

monitoring gelombang ionosfer dapat digunakan untuk penelitian gempa bumi dan tsunami.
Sistem ini merupakan pengembangan dari sistem komputasi TEC otomatis dari data GPS BIG
yang disingkat dengan TEC GPS BIG LAPAN (Buldan et al., 2013).

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

16

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

4.2 Data dan Metodologi
Setiap satu menit pengamatan data GPS format RINEX resolusi 1 Hz disimpan dalam satu
berkas (file) pengamatan. Data GPS tersebut digunakan untuk komputasi TEC setiap menit
yang disimpan dalam satu berkas.
Metodologi yang digunakan dalam GPSIONOQUAKE pada intinya terdiri dari 3 tahap

utama yaitu kombinasi data GPS otomatis, komputasi TEC otomatis, dan analisis spektrum
otomatis. Diagram alir metodologi yang digunakan dalam GPSIONOQUAKE diperlihatkan
pada Gambar 4-2. Penjelasan diagram alir tersebut adalah sebagai berikut:
4.2.1 Kombinasi data GPS
GPSIONOQUAKE pertama kali mendeteksi adanya berkas data GPS format RINEX yang
ada di folder /komgps. Jika berkas data GPS format RINEX terdeteksi maka program
combiner.exe langsung mengkonversinya menjadi data kombinasi GPS yaitu hasil perhitungan
L1-L2, P1-P2, data posisi stasiun dan data waktu pengamatan (epok). Jika tidak ada data GPS
dalam folder /komgps maka combiner.exe akan menunggu beberapa detik sebelum melakukan
deteksi di folder tersebut. Penjelasan lanjut kombinasi data GPS untuk estimasi TEC dapat
dilihat di makalah Buldan dkk., (2013).
4.2.2 Konversi data kombinasi GPS ke TEC
Setelah data GPS dikombinasikan maka data RINEX segera dipindahkan ke folder
/obsgps/tahun/doy sesuai dengan data pengamatan pada hari ke berapa (doy singkatan dari day
of year) dan pada tahun sesuai data pengamatan. Adapun data hasil kombinasi masuk secara
otomatis di folder /komgps/komgps. Di folder ini program com2tec.exe sudah mendeteksi
setiap saat keberadaan data tersebut. Jika ada data masuk dalam folder itu maka com2tec.exe
segera mengubahnya menjadi TEC dan hasil perhitungannya dimasukkan dalam folder
/komgps/komgps/tecgps/tahun/doy. Ada dua jenis data TEC yaitu data TEC GPS tiap menit
dan data TEC GPS tiap jam. Maka dalam folder /doy ada lagi folder /jam dan folder /men.
Selain itu untuk monitoring aktivitas gelombang infrasonik, 10 menit data terakhir masuk di
folder komgps/komgps/tecgps/menlatest. Bagaimana menghitung TEC dari data GPS telah
dijelaskan pada makalah sebelumnya yang terbit di proseding Siptekgan internasional yang
disusun oleh Buldan dkk., tahun 2013.
4.2.3 Analisis spektrum
Analisis spektrum gelombang ionosfer dilakukan setiap saat ada data baru di folder
/menlatest. Jika ada data baru maka program infraion.exe segera melakukan pembacaan berkas
data TEC menitan dan dikumpulkan untuk 10 menit, kemudian dilakukan perhitungan FFT
Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

17

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

setiap 5 menit data TEC dan bergerak setiap satu detik yang disingkat dengan Sliding FFT
(SFFT). Untuk data GPS setiap jam, digunakan SFFT setiap satu jam dan bergerak setiap 30
detik. Hasil analisis spektrum berupa informasi periodisitas variasi TEC dari orde detik sampai
sekitar 500 detik (dari data TEC 1 Hz, dengan berkas setiap menit) dan informasi gelombang
ionosfer dengan periode beberapa menit sampai puluhan menit (dari data GPS setiap 30 detik
dalam berkas setiap satu jam). Hasil analisis berupa gambar spektrum dan nilai numeriknya
secara otomatis disimpan dalam folder /spektrumlatest dan spektrum/tahun/doy. Data analisis
spektrum yang masuk folder spektrumlatest digunakan untuk monitoring gelombang ionosfer
dalam orde infrasonik secara near real time dan untuk keperluan penyebaran informasi melalui
website atau sebagai bahan informasi website yang dinamis. Komputer yang ada di BIG pada
akhir tahun 2014 telah dijadikan server dan telah diberi IP publik sehingga setiap saat bisa
diunduh melalui internet.
Untuk berkas data GPS tiap menit telah digunakan data pengamatan TEC selama 10 menit,
sehingga dapat digunakan untuk mendeteksi gelombang ionosfer infrasonik dengan periode
beberapa puluh detik sampai beberapa menit. Adapun gelombang gravitasi atmosfer yang
disebabkan tsunami memiliki periode beberapa puluh menit dapat dideteksi dengan data
sepanjang 1 jam pengamatan dengan resolusi pengamatan GPS yang standar yaitu setiap 30
detik.
Kejadian gempa bumi yang disertai tsunami di Aceh pada tanggal 26 Desember 2014 telah
digunakan untuk pengujian metodologi yang dikembangkan. Tiga stasiun GPS yaitu SAMP (di
Sampali, Medan), IISC (India) dan COCO (Cocos Island) telah diolah untuk mendapatkan nilai
TEC dari data fase sinyal GPS.

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

18

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

Gambar 4-2: Diagram alir sistem monitoring gelombang ionosfer dari data GPS
Perbedaan nilai TEC dari satu waktu pengamatan ke nilai TEC pada waktu pengamatan
sebelumnya disebut dengan TEC differensial, yang digunakan untuk menghilangkan variasi
periode panjang TEC GPS. Walaupun nilai TEC differensial sudah dapat menunjukkan variasi
Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

19

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

kecil jangka pendek tetapi gerakan satelit telah mempengaruhi kecenderungan data jangka
beberapa jam sehingga perlu dilakukan penyaringan menggunakan metode polinom. Orde
polinom yang digunakan adalah orde 3 untuk eliminasi trend jangka panjang dalam satu jam.
5. HASIL DAN PEMBAHASAN
5.1 Status GPSIONOQUAKE
Gambar 5-1 menunjukkan tampilan gelombang ionosfer dalam orde periode infrasonik
yang ditampilkan di PC TEC di BIG. Status saat ini yaitu pada akhir tahun 2014,
GPSIONOQUAKE dapat digunakan untuk monitoring gelombang ionosfer. Dari hasil
percobaan GPSIONOQUAKE dapat memunculkan fluktuasi di ionosfer dalam orde periode
gelombang infrasonik mulai dari beberapa puluh detik sampai beberapa ratus detik dan dari
orde beberapa menit sampai puluhan menit.
Pada Gambar 5-1 diketahui adanya fluktuasi dengan periode sekitar 48 detik yang terjadi
sekitar pukul 0,87 UT atau pukul 00:52 UT. Walaupun data pengamatan tiap detik tetapi waktu
kemunculan gelombang sulit dilihat sampai orde detik karena kejadian gelombang tidak
mendadak pada detik tertentu dan periodenya mendekati orde menit. Amplitudo gelombang
rata-ratanya sekitar 0,01 TECU dari stasiun pengamatan GPS di Cibinong dengan kode stasiun
BAKO untuk satelit dengan PRN 30 (paling atas). Periode fluktuasi sekitar 48 detik tersebut
semakin besar periodenya menjadi lebih dari 50 detik setelah pukul 1.2 UT atau pukul 01:12
UT (no 2 dari atas). Pada pukul 1,32 UT (sekitar pukul 01:19 UT) fluktuasi tersebut sudah
mulai melemah dengan amplitudo kurang dari 0,01 TECU, dengan periode lebih besar dari 65
detik (no 3 dari atas). Dari spektrum fluktuasi TEC ionosfer telah diidentifikasi juga
periodisitas sekitar 120 detik (2 menit) dengan amplitudo sekitar 0,01 TECU.
Dengan melihat karakteristik gelombang yang dideteksi yaitu periodenya masuk dalam
orde gelombang infrasonik, periode gelombang yang semakin membesar seiring dengan
berjalannya waktu, dan amplitudo yang semakin melemah dapat diduga bahwa gelombang
tersebut merupakan gelombang infrasonik yang bersumber dari lapisan di bawah ionosfer
seperti gempa bumi, petir, kilat, puting beliung, bukan dari atas ionosfer seperti aktivitas
matahari, magnetosfer dll.

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

20

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

Gambar 5-1: GPSIONOQUAKE mendeteksi adanya fluktuasi dengan periode sekitar 48 di
ionosfer dari satelit GPS dengan PRN 30 (paling atas). Periode fluktuasi tersebut
semakin besar menjadi lebih dari 50 menit setelah pukul 1,2 UT atau pukul 01:12
UT (no 2 dari atas) dan akhirnya dengan periodenya lebih besar dari 65 detik (no
3 dari atas). Diidentifikasi juga periodisitas sekitar 120 detik (2 menit) dengan
amplitudo mencapai 0,01 TECU (paling bawah).
Sistem monitoring gelombang ionosfer telah dapat beroperasi secara otomatis dan near
real time yang tertunda setiap satu atau dua menit. Tetapi dalam kondisi tertentu pengiriman
data dari alat GPS melalui jaringan lokal di BIG mengalami hambatan sehingga bisa tertunda
sampai satu jam. Hal ini disebabkan oleh gangguan jaringan area lokal (LAN) di BIG.
Untuk keperluan monitoring gelombang ionosfer yang terkait dengan gempa bumi dan
tsunami, GPSIONOQUAKE perlu dikombinasikan dengan data seismik dari pengamatan di
Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

21

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

permukan bumi. Oleh karena itu GPSIONOQUAKE telah dicoba dibuka aksesnya untuk
BMKG. Data hasil monitoring gelombang ionosfer dapat digunakan untuk penelitian koplinglitosfer-atmosfer-ionosfer dan untuk kajian serta verifikasi sistem sebelum digunakan untuk
operasional dalam memperkuat sistem peringatan dini tsunami.
5.2 Pengujian GPSIONOQUAKE untuk deteksi efek gempa bumi dan tsunami 26
Desember 2004
Menggunakan metodologi yang dikembangkan, TEC ionosfer telah dapat dihitung dari
data fase gelombang pembawa sinyal GPS dari stasiun pengamatan GPS di Sampali, Medan
Sumatra Utara dengan kode stasiun SAMP, dari stasiun GPS di India dengan kode stasiun IISC
dan setasiun GPS di Cocos Island dengan kode stasiun COCO.
Dari data TEC GPS tersebut gelombang ionosfer dengan sekala periode gelombang
infrasonik yang disebabkan oleh gempa bumi Aceh 26 Desember 2004 telah dapat dideteksi
sekitar 13 menit setelah gempa bumi sebagaimana diperlihatkan pada Gambar 5-2 bagian atas
dan lokasi titik pengamatan ionosfernya ditunjukkan pada Gambar 5-2 bagian tengah. Pada
bagian bawah Gambar 5-2 ditunjukkan posisi propagasi tsunami pada pukul 01:12 UT.
Kejadian gempa Aceh saat tersebut mendekati pukul 00:59:00 sehingga selisih waktu gempa
dengan waktu terjadinya geombang infrasonik di ionosfer (gelombang ionosfer infrasonk)
sekitar 13 menit. Jarak antara titik ionosfer diamati di koordinat (12,1751o LU, 93,889oBT) dan
episenter gempa bumi di koordinat sekitar (3,3oLU, 95,9oBT) adalah sekitar 1011 km. Dan jarak
lurus dari episenter gempa ke titik ionosfer yang diamati pada ketinggian 350 km adalah sekitar
1069 km. Jika dianggap gelombang menjalar dari episenter tsunami langsung ke titik ionosfer
maka gelombang infrasonik di atmosfer (gelombang atmosfer infrasonik) harus menjalar
dengan kecepatan sekitar 1371 meter/detik. Padahal kecepatan gelombang atmosfer infrasonik
hanya sekitar beberapa ratus meter/detik. Chum et al (2012) mendapatkan kecepatan
gelombang atmosfer infrasonik ini sekitar 407 meter/detik. Oleh karena itu tidak mungkin
gelombang atmosfer infrasonik yang dideteksi di ionosfer sebagai gelombang ionosfer
infrasonik menjalar langsung melalui atmosfer dari pusat gempa.
Propagasi gelombang atmosfer infrasonik ke ionosfer dapat diterangkan melalui dua jalan.
Pertama melalui permukaan bumi yang dikenal dengan gelombang Rayleigh dengan kecepatan
sekitar 3 – 4 km/detik. Kemudian gelombang atmosfer infrasonik menjalar vertikal dari
permukaan bumi ke ionosfer pada ketinggian ionosfer yang dideteksi dengan GPS sekitar 350
km. Dengan asumsi kecepatan gelombang Rayleigh 3,6 km/detik maka geombang seismik
tersebut mencapai koordinat titik ionosfer di permukaan bumi adalah 4,7 menit. Maka waktu

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

22

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

yang dibutuhkan geombang atmosfer infrasonik dari permukaan bumi sampai ionosfer adaah
8,3 menit sehingga kecepatan geombang atmosfer infrasonik sekitar 700 meter/detik.
Deteksi geombang gravitasi atmosfer di ionosfer setelah tsunami dapat dilakukan dengan
metode yang sama. Setelah dilakukan SFFT hasilnya ditunjukkan pada Gambar 5-3 bagian atas.
Lokasi titik ionosfer diperlihatkan pada Gambar 5-3 bagian tengah dan estimasi propagasi
tsunami pada saat tersebut ditunjukkan pada Gambar 5-3 bagian bawah. Dari Gambar 5-3
bagian tengah dan bawah diketahui waktu tsunami mencapai lokasi koordinat titik ionosfer di
permukaan bumi adalah sekitar pukul 01:53 UT. Sekitar 8 menit kemudian atau sekitar pukul
2:02 UT gejala gelombang ionosfer dengan periode sekitar 34 menit mulai terlihat di Gambar
5-3 bagian atas.
Dengan cara yang sama dapat diketahui bahwa gelombang ionosfer dengan periode sekitar
22 menit dan 34 menit dapat dideteksi di ionosfer dari stasiun GPS COCO sebagaimana
ditunjukkan pada Gambar 5-4 bagian atas. Terdeteksinya gelombang ionosfer dalam sekala
periode gelombang gravitasi atmosfer di atas Cocos Island memperkuat penjelasan bahwa
propagasi gelombang ionosfer yang bersumber dari tsunami Aceh menjalar melalui dua media.
Pertama melalui hidrosfer yang dibawa oleh tsunami dari episenternya di Aceh sampai di
sebelah Timur Cocos Island seperti terlihat pada Gambar 5-4 bagian tengah.

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

23

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

Gambar 5-2: Gelombang ionosfer infrasonik muncul sekitar 13 menit setelah gempa
bumi Aceh, 26 Desember 2004 pukul 00:59 UT (bagian atas), di titik
ionosfer (bagian tengah, dan status tsunami Aceh 26 Desember 2004, 13
menit setelah gempa.

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

24

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

Gambar 5-3: Gelombang ionosfer dengan periode sekitar 34 menit dapat dideteksi dari data
TEC GPS setelah dilakukan analisis spektrum menggunakan SFFT (bagian
atas), di lokasi titik ionosfer yang diamati (bagian tengah), dan kondisi
propagasi tsunami Aceh pada pukul 01:51 UT.

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

25

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

Gambar 5-4: Gelombang ionosfer teramati dari data TEC GPS sekitar pukul 4:00 UT
dengan periode 22 menit (bagian atas) di titik ionosfer di sebelah timur Cocos
Island (bagian tengah). Kondisi propagasi tsunami pada pukul 03:43
beberapa menit sebelum terdeteksinya gelombang ionosfer (bagian bawah).
Jika asumsi kecepatan gelombang ionosfer infrasonik sebesar 700 m/detik diterapkan disini
maka jika gelombang ionosfer dianggap sampai ketinggian 350 km dicapai dalam 8,3 menit,
berarti tsunami tersebut telah mencapai Cocos Island 8,3 menit sebelumnya. Berdasarkan
simulasi tsunami yang dikeluarkan NOAA, tsunami dengan ketinggian kurang dari 0,5 meter
telah mencapai Cocos Island pada pukul 3:43 UT. Waktu yang dibutuhkan tsunami mencapai
Cocos Island adalah sekitar 2 jam 44 menit. Jarak horisontal episenter gempa sampai titik
ionosfer adalah sekitar 1724 km. Jadi kecepatan tsunami diestimasi dari kejadian gelombang
ionosfer adalah sekitar 631 km / jam. Kemudian tsunami tersebut menimbulkan gelombang
Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

26

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

gravitasi atmosfer dan menjalar vertikal dan sampai ke ionosfer 8,3 menit kemudian yaitu
sekitar pukul 3:51 UT. Dari Gambar 5-4 bagian bawah dan atas diketahui bahwa perhitungan
ini sesuai dengan waktu pengamatan gelombang ionosfer dengan periode sekitar 22 menit.
Dari tiga stasiun GPS yaitu SAMP di Sampali, IISC di India dan COCO di Cocos Island
telah dibuktikan bahwa metodologi yang dikembangkan mampu mendeteksi gelombang
ionosfer yang bersumber dari gempa bumi melalui gelombang seismik dan gelombang
infrasonik, dan dapat mendeteksi gelombang ionosfer yang bersumber dari tsunami melalui
hidrosfer secara horisontal dan menjalar vertikal melalui atmosfer dalam bentuk gelombang
atmosfer infrasonik.
5.4 Pengembangan Sistem Untuk Keperluan Operasional
GPSIONOQUKAE baru dapat digunakan untuk monitoring gelombang ionosfer yang
terkait dengan aktivitas gelombang infrasonik dengan periode kurang dari 5 menit dan
gelombang gravitasi atmosfer di ionosfer dengan periode beberapa puluh menit. Untuk
monitoring gelombang ionosfer infrasonik, sistem belum dapat digunakan untuk estimasi arah
dan besar kecepatan gelombang ionosfer karena masih menggunakan dua alat penerima GPS
beresolusi 1 Hz.
Adapun dari data GPS tiap jam, sistem monitoring dapat digunakan untuk estimasi
propagasi tsunami melalui gelombang ionosfer karena sudah menggunakan 8 stasiun GPS,
tetapi pengumpulan data otomatis setiap 1 jam belum memenuhi kebutuhan untuk operasional.
Untuk dapat digunakan secara operasional pemantauan gelombang ionosfer terkait gempa
bumi dan tsunami, GPSIONOQUAKE memerlukan minimal 3 GPS receiver dengan resolusi
1 Hz yang dapat disimpan datanya setiap 10 detik. Jarak antar stasiun GPS adalah sedemikian
sehingga kecepatan gelombang infrasonik sekitar beberapa km/detik masih dapat dideteksi.
Hal ini membutuhkan jarak antar stasiun GPS sekitar 30 km. Dengan demikian sistem
monitoring dapat memberikan informasi gelombang ionosfer yang diupdate setiap 10 detik.
Untuk transfer data GPS dari 3 stasiun dibutuhkan kabel fiber optik agar stabil dan cepat. PC
yang dibutuhkan adalah yang memiliki kecepatan tinggi, dengan media penyimpan data yang
dinamis sehingga dapat ditambah sesuai kebutuhan tanpa menghentikan operasional sistem.
Dengan demikian diperlukan pengembangan perangkat lunak yang dapat membaca streaming
data GPS format Networked Transport of RTCM via Internet Protocol (NTRIP).

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

27

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

6. KESIMPULAN DAN REKOMENDASI
Gelombang ionosfer telah dapat dimunculkan dengan sistem monitoring gelombang
ionosfer GPSIONOQUAKE. Osilasi periodik ionosfer sama dengan dengan orde osilasi
gelombang infrasonik sampai gelombang gravitasi atmosfer. Adapun gangguan ionosfer yang
tidak reguler periodenya hampir tiap saat terjadi dengan amplitudo yang lebih kecil dari
gelombang yang periodik dan reguler.
Pengujian metodologi untuk deteksi efek gempa bumi dan tsunami Aceh 26 Desember
2004

pada

lapisan

ionosfer

menunjukkan

bahwa

metodologi

yang

digunakan

GPSIONOQUAKE mampu mendeteksi gelombang ionosfer yang disebabkan oleh gempa
bumi dan tsunami tersebut.
GPSIONOQUAKE perlu dikembangkan lebih lanjut sehingga dapat digunakan untuk
monitoring arah pergerakan gelombang ionosfer sehingga dapat dijadikan bahan informasi
untuk perkiraan episenter gempa bumi dan monitoring tsunami melalui gelombang ionosfer
dan dapat dijadikan sebagai penguat sistem peringatan dini tsunami di Indonesia.
UCAPAN TERIMA KASIH
Penulis mengucapkan terimakasih kepada LAPAN yang telah memberikan dukungan
fasilitas untuk pengembangan sistem GPSIONOQUAKE, kepada BIG yang telah memberikan
ijin penempatan komputer server dan untuk komputasi TEC dari jaringan pengamatan GPS
yang dikelolanya, dan kepada BMKG yang telah mempercayakan pengembangan sistem
kepada penulis.
DAFTAR RUJUKAN
Choosakul, N., A. Saito, T. Iyemori, dan M. Hashizume, 2009, “Excitation of 4-Min Periodic
Ionospheric Variations Following The Great Sumatra-Andaman Earthquake In 2004”,
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114.
Chum, J., F. Hruska, J. Zednik, and

J. Lastovicka, 2012,” Ionospheric Disturbances

(Infrasound Waves) over The Czech Republic Excited”, the 2011 Tohoku earthquake,
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, A08319.
Hao, Y.Q., Z. Xiao, and D. H. Zhang, 2012, “Multi-Instrument Observation on Co-Seismic
Ionospheric

Effects

after

Great

Tohoku

Earthquake”,

JOURNAL

OF

GEOPHYSICAL RESEARCH, VOL. 117.
Lognonné, P., R. Garcia, F. Crespon, G. Occhipinti, A. Kherani, J. Artru-Limbin, 2006,
“Seismic waves in the ionosphere”, European Journal of Physics, 37, 4, 200.

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014

28

ISBN: 978-979-1458-87-0

Peran Sains dan Teknologi Atmosfer-Antariksa Untuk Mendukung
Pembangunan Nasional Berkelanjutan

Muslim, B., J. Effendi, R. Suryana, 2013, “Developing Real Time GPS TEC Computing
System”, Proceeding of International SIPTEKGAN, Serpong, 3 Desember 2013.
Occhipinti G., A. Komjathy, P. Lognonne, 2008a, “Tsunami Detection oleh GPS, How
Ionospheric Observation Might Improve the Global Warning System”, GPS World,
February, 2008.
Occhipinti, G., E. A., Kherani, and P., Lognonn´e, 2008b, “Geomagnetic Dependence of
Ionospheric Disturbances Induced Oleh Tsunamigenic Internal Gravity Waves”,
Geophys. J. Int.,173, 753–765.
GITEWS, 2014, www.gitews.org, diakses 2 Nopember 2014.

Seminar Nasional Sains Atmosfer dan Antariksa (SNSAA) 2014
Lembaga Penerbangan dan Antariksa Nasional (Lapan)
Bandung 25 November 2014
View publication stats

29