paper 14-17-2009. 110KB Jun 04 2011 12:03:07 AM

ACTA UNIVERSITATIS APULENSIS

No 17/2009

ON SPECIAL HYPERSURFACE OF A FINSLER SPACE WITH
n+1
THE METRIC α + βαn

S.K. Narasimhamurthy, S.T. Aveesh, H.G. Nagaraja and
Pradeep Kumar
Abstract. The purpose of the present paper is to investigate the various
n+1
kinds of hypersurfaces of Finsler space with special (α, β) metric α + βαn
2
which is a generalization of the metric α + βα consider in [9].
2000 Mathematics Subject Classification: 53B40, 53C60.
Keywords and phrases: Special Finsler hypersurface, (α, β)-metric, Normal
curvature vector, Second fundamental tensor, Hyperplane of 1st kind, Hyperplane of 2nd kind, Hyperplane of 3rd kind.
1. Introduction
Let F n = (M n , L) be an n-dimensional Finsler space, i.e., a pair consisting
of an n-dimensional differential manifold M n equipped with a fundamental

function L(x, y). The concept of the (α, β)-metric L(α, β) was introduced
by M. Matsumoto [5] and has been studied by many authors ([1],[2],[8]). A
Finsler metric L(x, y) is called an (α, β)-metric L(α, β) if L is a positively
homogeneous function of α and β of degree one, where α2 = aij (x)y i y j is a
Riemannian metric and β = bi (x)y i is a 1-form on M n .
A hypersurface M n−1 of the M n may be represented parametrically by the
equation xi = xi (uα ), α = 1, · · · , n − 1, where uα are Gaussian coordinates on
i
M n−1 . The following notations are also employed [3] : Bαβ
:= ∂ 2 xi /∂uα ∂uβ ,
ij...
i
i
B0β
:= v α Bαβ
, Bαβ...
:= Bαi Bβj ..., If the supporting element y i at a point (uα ) of
M n−1 is assumed to be tangential to M n−1 , we may then write y i = Bαi (u)vα ,
so that v α is thought of as the supporting element of M n−1 at the point (uα ).
129


S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
Since the function L(u, v) := L(x(u), y(u, v)) gives rise to a Finsler metric
¯
of M n−1 , we get an (n-1)-dimensional Finsler space F n−1 = (M n−1 , L(u, v)).
¯
In the present paper, we consider an n-dimensional Finsler space F n =
n+1
(M n , L) with (α, β)-metric L(α, β) = α + βαn and the hypersurface of F n
with bi (x) = ∂i b being the gradient of a scalar function b(x). We prove the
conditions for this hypersurface to be a hyperplane of 1st kind, 2nd kind and
3rd kind.
2. Preliminaries
Let F n = (M n , L) be a special Finsler space with the metric
β n+1
L(α, β) = α + n .
α

(1)


The derivatives of the (1) with respect to α and β are given by
Lα =
Lβ =
Lαα =
Lββ =
Lαβ =

αn+1 + β n+1
,
αn
(n + 1)β n
,
αn
n(n + 1)β n+1
,
αn+2
n(n + 1)β n−1
,
αn
−n(n + 1)β n

,
αn+1

where Lα = ∂L/∂α, Lβ = ∂L/∂β, L(α, β) = ∂Lα /∂β, Lββ = ∂Lβ /∂β and
Lαβ = ∂Lα /∂β.
In the special Finsler space F n = (M n , L) the normalized element of sup˙ and the angular metric tensor hij are given by [7]:
port li = ∂L
li = α−1 Lα Yi + Lβ bi ,
hij = paij + q0 bi bj + q1 (bi Yj + bj Yi ) + q2 Yi Yj ,
where
Yi = aij y j ,
130

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
(αn+1 + β n+1 )(αn+1 − nβ n+1 )
,
α2(n+1)
n(n + 1)(αn+1 + β n+1 )β n−1
,
LLββ =

α2n
−n(n + 1)(αn+1 + β n+1 )β n
LLαβ α−1 =
,
α2(n+1)
Lα−2 (Lαα − Lα α−1 )
(αn+1 + β n+1 )(n(n + 2)β n+1 − αn+1 )
.
α2(n+2)

p = LLα α−1 =
q0 =
q1 =
q2 =
=

(2)

The fundamental tensor gij = 21 ∂˙i ∂˙j L2 and it’s reciprocal tensor gij is given
by [7]

gij = paij + p0 bi bj + p1 (bi Yj + bj Yi ) + p2 Yi Yj ,
where
(n + 1)[nαn+1 β n−1 + (2n + 1)β 2n ]
,
α2n
(n + 1)β n
−1
[(1 − n)αn+1 − 2nβ n+1 ],
= q1 + L pLβ =
2(n+1)
α
= q2 + p2 L−2 ,
(αn+1 + β n+1 )(n(n + 2)β n+1 − αn+1 ) + (αn+1 − nβ n+1 )2
.
=
α2(n+1)

p0 = q0 + L2β =
p1
p2

p2

g ij = p−1 aij + S0 bi bj + S1 (bi y j + bj y i ) + S2 y i y j ,

(3)

(4)

where
bi = aij bj ,
S0 = (pp0 + (p0 p2 − p21 )α2 )/ζ,
S1 = (pp1 + (p0 p2 − p21 )β)/ζp,
S2 = (pp2 + (p0 p2 − p21 )b2 )/ζp,
b2 = aij bi bj ,
ζ = p(p + p0 b2 + p1 β) + (p0 p2 − p21 )(α2 b2 − β 2 ).
The hv-torsion tensor Cijk = 21 ∂˙k gij is given by [7]
2pCijk = p1 (hij mk + hjk mi + hki mj ) + γ1 mi mj mk ,

131


(5)

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
where

∂p0
− 3p1 q0 ,
mi = bi − α−2 βYi .
(6)
∂β
Here mi is a non-vanishing covariant vector orthogonal to the element of
support (y i . )
i
Let
be the components of Christoffel symbols of the associated
jk
Riemannian space Rn and ∇k be covariant differentiation with respect to xk
relative to this Christoffel symbols. We put
γ1 = p


2Eij = bij + bji ,

2Fij = bij − bji ,

(7)

where bij = ∇j bi .
∗i
i
Let CΓ = (Γ∗i
, C)
) be the Cartan connection of F n . The difference
jk , Γ
(0k jk
i
i
of the special Finsler space F n is given by [4]
tensor Djk
= Γ∗i
jk −

jk
i
Djk
= B i Ejk + Fki Bj + Fji Bk + Bji b0k + Bki b0j
i
i
m
m is
−b0m g im Bjk − Cjm
Am
k − Ckm Aj + Cjkm As g



s

i
m
(Cjm
Csk


+

i
m
Ckm
Csj



(8)

m i
Cjk
Cms ),

where
B i = g ij Bj ,
Fik = g kj Fji
)
.
∂p0
−2
Bij = p1 (aij − α Yi Yj ) +
2,
mi mj
∂β
Bk = p0 bk + p1 Yk ,
(

Bik = g kj Bji ,
m
m
m
m
Am
k = bk E00 + B Ek0 + Bk F0 + B0 Fk ,
λm = B m E00 + 2B0 F0m ,
B0 = Bi y i .

(9)

where ‘0’ denote contraction with y i except for the quantities p0 , q0 and
S0 .
3. Induced Cartan connection
Let F n−1 be a hypersurface of F n given by the equations xi = xi (uα ). The
element of support y i of F n is to be taken tangential to F n−1 , that is
y i = Bαi (u)v α .
132

(10)

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
The metric tensor gαβ and v-torsion tensor Cαβγ of F n−1 are given by
Cαβγ = Cijk Bαi Bβj Bγk .

gαβ = gij Bαi Bβj ,

At each point uα of F n−1 , a unit normal vector N i (u, v) is defined by
gij (x(u, v), y(u, v))Bαi N j = 0,

gij (x(u, v), y(u, v))N i N j = 1.

As for the angular metric tensor hij , we have
hαβ = hij Bαi Bβj ,

hij Bαi N j = 0

hij N i N j = 1.

(11)

If (Biα , Ni ) denote the inverse of (Bαi , N i ), then we have
Biα = g αβ gij Bβj ,

Bαi Biβ = δαβ ,

Biα N i = 0,
Bαi Ni = 0,
Bik = g kj Bji ,
Bαi Bjα + N i Nj = δji .

Ni = gij N j ,

α
α
n−1
The induced connection ICΓ = (Γ∗α
induced from the
βγ , Gβ , Cβγ ) of F
i
∗i
∗i
Cartan’s connection (Γjk , Γ0k , Cjk ) is given by [6]
α
α
i
∗i j k
Γ∗α
βγ = Bi (Bβγ + Γjk Bβ Bγ ) + Mβ Hγ ,
j
i
Gαβ = Biα (B0β
+ Γ∗i
0j Bβ ),
α
i
Cβγ
= Biα Cjk
Bβj Bγk ,

where
i
Mβγ = Ni Cjk
Bβj Bγk ,

Hβ =

i
Ni (B0β

+

Mβα = g αγ Mβγ ,

(12)

j
Γ∗i
oj Bβ ),

i
i
i
and Bβγ
= ∂Bβi /∂U r , B0β
v α . The quantities Mβγ and Hβ are called
= Bαβ
the second fundamental v-tensor and normal curvature vector respectively [6].
The second fundamental h-tensor Hβγ is defined as [6]
j k
i
Hβγ = Ni (Bβγ
+ Γ∗i
jk Bβ Bγ ) + Mβ Hγ ,

(13)

i
Mβ = Ni Cjk
Bβj N k .

(14)

where

133

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
The relative h and v-covariant derivatives of projection factor Bαi with
respect to ICΓ are given by
i
Bα|β
= Hαβ N i ,

Bαi |β = Mαβ N i .

(15)

The equation (13) shows that Hβγ is generally not symmetric and
Hβγ − Hγβ = Mβ Hγ − Mγ Hβ .

(16)

The above equations yield
H0γ = Hγ ,

Hγ0 = Hγ + Mγ H0 .

(17)

We use following lemmas which are due to Matsumoto [6]:
Lemma 1 The normal curvature H0 = Hβ v β vanishes if and only if the normal curvature vector Hβ vanishes.
Lemma 2 A hypersurface F n−1 is a hyperplane of the 1st kind if and only if
Hα = 0.
Lemma 3 A hypersurface F n−1 is a hyperplane of the 2nd kind with respect
to the connection CΓ if and only if Hα = 0 and Hαβ = 0.
Lemma 4 A hyperplane of the 3rd kind is characterized by Hαβ = 0 and
Mαβ = 0.
4. Hypersurface F n−1 (c) of the special Finsler space
Let us consider special Finsler metric L = α + βαn with a gradient bi (x) =
∂i b for a scalar function b(x) and a hypersurface F n−1 (c) given by the equation
b(x) = c(constant) [9].
From parametric equations xi = xi (uα ) of F n−1 (c), we get ∂α b(x(u)) = 0 =
bi Bαi , so that bi (x) are regarded as covariant components of a normal vector
field of F n−1 (c). Therefore, along the F n−1 (c) we have
n+1

bi Bαi = 0

and

bi y i = 0.

(18)

The induced metric L(u, v) of F n−1 (c) is given by
L(u, v) = aαβ v α v β ,
134

aαβ = aij Bαi Bβj

(19)

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
which is the Riemannian metric.
At a point of F n−1 (c), from (2), (3) and (5), we have
p = 1, q0 = 0, q1 = 0, q2 = −α−2 , p0 = 0, p1 = 0
p2 = 0, ζ = 1, S0 = 0, S1 = 0, S2 = 0.

(20)

Therefore, from (4) we get
g ij = aij .

(21)

Thus along F n−1 (c), (21) and (18) lead to g ij bi bj = b2 .
Therefore, we get

bi (x(u)) = b2 Ni ,
b2 = aij bi bj .

(22)

i.e., bi (x(u)) = bNi , where b is the length of the vector bi .
Again from (21) and (22) we get
bi = bNi .

(23)

Thus we have
Theorem 1 In the special Finsler hypersurface F n−1 (c),the induced metric is
a Riemannian metric given by (19) and the scalar function b(x) is given by
(22) and (23).
The angular metric tensor and metric tensor of F n are given by
Yi Yj
hij = aij − 2 ,
α
gij = aij .

(24)

(a)

Form (18), (24) and (11) it follows that if hαβ denote the angular metric
(a)
tensor of the Riemannian aij (x), then along F n−1 (c), hαβ = hαβ .
From (3), we get
(n + 1)[n(n − 1)αn+1 β n−2 + 2n(2n + 1)β 2n−1 ]
∂p0
.
=
∂β
α2n
0
= 0 and therefore (6) gives γ1 = 0, mi = bi .
Thus along F n−1 (c), ∂p
∂β
Therefore the hv-torsion tensor becomes

Cijk = 0
135

(25)

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
in a special Finsler hypersurface F n−1 (c).
Therefore, (12), (14) and (25) give
Mαβ = 0 and Mα = 0.

(26)

From (16) it follows that Hαβ is symmetric. Thus we have
Theorem 2 The second fundamental v-tensor of special Finsler hypersurface
F n−1 (c) vanishes and the second fundamental h-tensor Hαβ is symmetric.
i
Next from (18), we get bi|β Bαi + bi Bα|β
= 0. Therefore, from (15) and using
j
bi|β = bi|j Bβ + bi |j N j Hβ , we get

bi|j Bαi Bβj + bi |j Bαi N j Hβ + bi Hαβ N i = 0.

(27)

Since bi |j = −bh Cijh , we get
bi |j Bαi N j = 0.
Thus (27) gives
bHαβ + bi|j Bαi Bβj = 0.

(28)

It is noted that bi|j is symmetric. Furthermore, contracting (28) with v β
and then with v α and using (10), (17) and (26) we get
bHα + bi|j Bαi y j = 0,
bH0 + bi|j y i y j = 0.

(29)
(30)

In view of Lemmas (1) and (2), the hypersurface F n−1 (c) is hyperplane of the
first kind if and only if H0 = 0. Thus from (30) it follows that F n−1 (c) is
a hyperplane of the first kind if and only if bi|j y i y j = 0. Here bi|j being the
covariant derivative with respect to CΓ of F n depends on y i .
Since bi is a gradient vector, from (7) we have Eij = bij , Fij = 0 and Fji = 0.
Thus (8) reduces to
i
Djk
= B i bjk + Bji b0k + Bki b0j − b0m g im Bjk
i
i
m
m is
−Cjm
Am
k − Ckm Aj + Cjkm As g

i
m
i
m
m i
+λs (Cjm
Csk
+ Ckm
Csj
− Cjk
Cms ).

136

(31)

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
In view of (20) and (21), the relations in (9) become to
Bi = 0, B i = 0, Bij = 0,
Bji = 0, Am
λm = 0.
k = 0,

(32)

By virtue of (32) we have B0i = 0, Bi0 = 0 which leads Am
0 = 0.
Therefore we have
i
Dj0
= 0,
i
D00
= 0.

Thus from the relation (18), we get
i
bi Dj0
= 0,

(33)

i
bi D00
= 0.

(34)

From (25) it follows that
i
bm bi Cjm
Bαj = b2 Mα = 0.
r
Therefore, the relation bi|j = bij − br Dij
and equations (33), (34) give

bi|j y i y j = b00 .
Consequently, (29) and (30) may be written as
bHα + bi|0 Bαi = 0,
bH0 + b00 = 0.
Thus the condition H0 = 0 is equivalent to b00 = 0, where bij does not
depend on y i . Since y i is to satisfy (18), the condition is written as bij y i y j =
(bi y i )(cj y j ) for some cj (x), so that we have
2bij = bi cj + bj ci .

(35)

Thus we have
Theorem 3 The special Finsler hypersurface F n−1 (c) is hyperplane of 1st kind
if and only if (35) holds.
137

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
r
Using (25), (31) and (32), we have br Dij
= 0. Substituting (35) in (28) and
using (18), we get
Hαβ = 0.
(36)

Thus, from Lemmas (1), (2) (3) and Theorem 3, we have the following:
Theorem 4 If the special Finsler hypersurface F n−1 (c) is a hyperplane of the
1st kind then it becomes a hyperplane of the 2nd kind too.
Hence from (17), (36), Theorem 2, and Lemma (4) we have
Theorem 5 The special Finsler hypersurface F n−1 (c) is a hyperplane of the
3rd kind if and only if it is a hyperplane of 1st kind.

References
[1] M. Hashiguchi and Y. Ichijyo, On some special (α, β)-metrics, Rep. Fac.
Sci. Kagasima Univ. (Math., Phys., Chem.), 8 (1975), 39-46.
[2] S. Kikuchi, On the condition that a space with (α, β)-metric be locally
Minkowskian, Tensor, N.S., 33 (1979), 242-246.
[3] M. Kitayama, On Finslerian hypersurfaces given by β change, Balkan
J. of Geometry and its Applications, 7(2002), 49-55.
[4] M. Matsumoto, Foundations of Finsler geometry and special Finsler
spaces, Kaiseisha press, Saikawa, Otsu, Japan, 1986.
[5] M. Matsumoto,Theory of Finsler spaces with (α, β)-metric, Rep. Math.
Phys., 30(1991), 15-20.
[6] M. Matsumoto, The induced and intrinsic Finsler connection of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., 25(1985),
107-144.
[7] G. Randres, On an asymmetrical metric in the four-apace of general
relativity, Phys. Rev., 59(2)(1941), 195-199.
[8] C. Shibata, On Finsler spaces whih an (α, β)-metric, J. Hokkaido Univ.
of Education, IIA 35(1984), 1-16.
[9] Il-Yong Lee, Ha-Yong Park and Yong-Duk Lee, On a hypersurface of
2
a special Finsler space with a metric α + βα , Korean J. Math. Sciences,
8(1)(2001), 93-101.

138

S.K. Narasimhamurthy, S.T.Aveesh, H.G.Nagaraja, P. Kumar- On special...
Authors:
S.K. Narasimhamurthy, S.T. Aveesh and Pradeep Kumar
Department of P.G. Studies and Research in Mathematics,
Kuvempu University,
Shankaraghatta - 577451,
Shimoga, Karnataka, India.
email: [email protected], [email protected], [email protected].
H.G. Nagaraja
Department of Mathematics,
Bangalore University,
Central College Campus,
Bangalore - 577451,
Karnataka, India.
email: [email protected].

139

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52