paper 15-17-2009. 112KB Jun 04 2011 12:03:07 AM
ACTA UNIVERSITATIS APULENSIS
No 17/2009
CRITERIA FOR UNIVALENCE OF CERTAIN
INTEGRAL OPERATORS
V. Ravichandran
Abstract. In this paper, we determine conditions on β, αi and fi (z) so
n R
o1/β
Q
z
that the integral operator β 0 ξ β−1 ni=1 (fi (ξ)/ξ)1/αi dξ
is univalent in
the open unit disk. We also obtain similar results for the integral operator
R z β−1
1
P
β 0 ξ
exp ( ni=1 αi fi (ξ)) dξ β .
2000 Mathematics Subject Classification: 30C45.
1. Introduction
An analytic function that maps different points in the open unit disk U :=
{z ∈ C : |z| < 1} to different points in C is a univalent function. Such functions
have been studied for long time. Let A be the class of all analytic functions
f (z) defined in U and normalized by the conditions f (0) = 0 = f ′ (0) − 1. Let
S be the subclass of A consisting of univalent functions. Pascu [2] has proved
the following theorem:
Theorem 1 ([1],[2]) Let β ∈ C, γ ∈ R and ℜβ ≥ γ > 0. If f ∈ A satisfies
1 − |z|2γ zf ′′ (z)
f ′ (z) ≤ 1 (z ∈ U ),
γ
then the integral operator
Z
Fβ (z) = β
z
ξ
0
is in S.
141
β−1 ′
f (ξ)dξ
β1
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
We denote by Sβ the class of functions f ∈ A satisfying
2 ′
z f (z)
f 2 (z) − 1 < β (0 < β ≤ 1; z ∈ U )
while Sβ∗ denote the class of functions f ∈ A satisfying
′
zf (z)
< β (0 < β ≤ 1; z ∈ U ).
−
1
f (z)
Using Theorem 1, Pescar [4] proved the following theorem.
Theorem 2 ([4]) Let α, β ∈ C and ℜβ ≥ ℜα ≥ 3/|α|. If f ∈ S1 satisfies the
condition
|f (z)| ≤ 1 (z ∈ U ),
then the integral operator
( Z
Hα,β (z) = β
z
ξ β−1
0
f (ξ)
ξ
α1
dξ
) β1
(1)
is in S.
Using Theorem 1, Breaz and Breaz [1] extended Theorem 2 and obtained
the following theorem.
Theorem 3 (Theorem 1, p.260 [1]) Let α, β ∈ C and ℜβ ≥ ℜα > 3n/|α|. If
fi ∈ S1 (i = 1, 2, · · · , n) satisfies the conditions
|fi (z)| ≤ 1
(z ∈ U,
i = 1, 2, · · · , n),
then the integral operator
( Z
Fα,β (z) = β
1
z
ξ β−1
0
n
Y
fi (ξ) α
i=1
ξ
dξ
) β1
is in S.
Using Theorem 1, Pescar [5] obtained the following theorem.
142
(2)
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 4 (Theorem 1, p.452 [5]) Let f ∈ A and β ∈ C satisfies
√
3 3
1 ≤ ℜβ ≤ |β| ≤
.
2
If
then the function
|zf ′ (z)| ≤ 1
Z
Tβ (z) = β
(z ∈ U ),
z
ξ β−1
0
is in S.
β
ef (ξ) dξ
β1
By Schwarz’s Lemma (see below), the only function f ∈ A with |f (z)| ≤ 1
is f (z) = z and hence the hypothesis of Theorem 3–4 are satisfied only by a
single function f (z) = z.
In this paper, we extend Theorem 2 and Theorem 4 to obtain a sufficient
conditions for univalence of a more general integral operator. We also prove
some related results. The class of functions to which our theorems are applicable is non-trivial (when Mi 6= 1 for some i).
To prove our main results, we need the following lemma:
Lemma 1 (Schwarz’s Lemma) If the function w(z) is analytic in the unit
disk U , w(0) = 0 and |w(z)| ≤ 1 for all z ∈ U , then
|w(z)| ≤ |z| (z ∈ U ),
|w′ (0)| ≤ 1
and the either of these equalities holds if and only if w(z) = ǫz, where |ǫ| = 1.
2. Univalence Criteria
For fi ∈ A (i = 1, 2, · · · , n) and α1 , α2 , . . . , αn , β ∈ C, we define an integral
operator by
( Z
Fα1 ,α2 ,··· ,αn ;β (z) := β
1
z
ξ β−1
0
n
Y
fi (ξ) αi
i=1
ξ
dξ
) β1
.
(3)
When α1 = α2 = · · · = αn = α, Fα1 ,α2 ,··· ,αn ;β (z) becomes the integral operator
Fα,β (z) considered in Theorem 3.
143
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 5 Let 0 < βi ≤ 1. Let fi ∈ Sβi (i = 1, 2, · · · , n) satisfy the conditions
|fi (z)| ≤ Mi (Mi ≥ 1; z ∈ U, i = 1, 2, · · · , n).
If α1 , α2 , . . . , αn , β ∈ C, ℜβ ≥ γ and
γ :=
n
X
1 + Mi (1 + βi )
|αi |
i=1
,
(4)
then the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Proof.
Define the function h(z) by
h(z) :=
Z
0
n
zY
i=1
fi (ξ)
ξ
α1
i
dξ.
Then we have h(0) = h′ (0) − 1 = 0. Also a simple computation yields
1
′
h (z) =
n
Y
fi (z) αi
z
i=1
and
n
zh′′ (z) X 1
=
h′ (z)
αi
i=1
zfi′ (z)
−1 .
fi (z)
(5)
From equation (5), we have
′′
n
X
zh (z)
1 zfi′ (z)
≤
+1
h′ (z)
|αi | fi (z)
i=1
n
X
1 z 2 fi′ (z) fi (z)
=
+1 .
|αi | fi2 (z) z
i=1
From the hypothesis, we have |fi (z)| ≤ Mi
by Schwartz Lemma, yields
|fi (z)| ≤ Mi |z| (z ∈ U,
144
(z ∈ U,
(6)
i = 1, 2, · · · , n) which,
i = 1, 2, · · · , n).
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Using this inequality in the inequality (6), we obtain
′′
2 ′
n
X
zh (z)
z fi (z)
1
≤
+1
Mi 2
h′ (z)
|αi |
fi (z)
i=1
2 ′
n
X
z fi (z)
1
Mi 2
− 1 + 1 + Mi .
≤
|α
|
f
(z)
i
i
i=1
Since fi ∈ Sβi , in view of (4), the equation (7) yields
′′
n
X
zh (z)
1 + Mi (1 + βi )
<
= γ.
h′ (z)
|αi |
i=1
(7)
(8)
Multiply (8) by
1 − |z|2γ
,
γ
we obtain
1 − |z|2γ
γ
′′
zh (z)
2γ
h′ (z) ≤ 1 − |z| < 1 (z ∈ U ).
Since ℜβ ≥ γ > 0, it follows from Theorem 1 that
β1
Z z
β−1 ′
ξ h (ξ)dξ ∈ S.
β
0
Since
Z
β
0
z
ξ β−1 h′ (ξ)dξ
β1
( Z
= β
1
z
ξ β−1
0
n
Y
fi (ξ) αi
i=1
ξ
dξ
) β1
= Fα1 ,α2 ,··· ,αn ;β (z),
the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Theorem 6 Let α1 , α2 , . . . , αn , β ∈ C, 0 < βi ≤ 1 (i = 1, 2, . . . , n) and
ℜβ ≥ γ :=
n
X
βi
.
|α
|
i
i=1
(9)
If fi ∈ Sβ∗i (i = 1, 2, · · · , n), then the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is
in S.
145
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Proof.
From (5), we get
′′
′
n
zh (z) X
zfi (z)
1
≤
−
1
h′ (z)
fi (z)
|α
|
i
i=1
and by using (9) and fi ∈ Sβ∗i , we obtain
′′
n
zh (z) X
βi
≤
= γ.
h′ (z)
|α
|
i
i=1
This, as in the proof of Theorem 5, shows that
1 − |z|2γ zh′′ (z)
h′ (z) < 1 (z ∈ U )
γ
and therefore, by Theorem 1,
Z
β
z
ξ β−1 h′ (ξ)dξ
0
β1
∈ S.
Therefore the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Example 1 Let α, β ∈ C, 0 < βi ≤ 1 (i = 1, 2, . . . , n) satisfy
n
1 X
ℜβ ≥
βi .
|α| i=1
If fi ∈ Sβ∗i (i = 1, 2, · · · , n), then the function Fα,β (z) defined by (2) is in S.
β1
and f ∈ Sβ∗1 , then the
In particular, if α, β ∈ C, 0 < β1 ≤ 1 satisfy ℜβ ≥ |α|
function Hα,β (z) defined by (1) is in S.
For i = 1, 2, . . . , n, let αi , β ∈ C and fi (z) ∈ A. Define the integral operator
Tα1 ,...,αn ;β (z) by
( Z
Tα1 ,...,αn ;β (z) = β
z
ξ β−1 exp
0
n
X
i=1
146
!
αi fi (ξ) dξ
) β1
.
(10)
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 7 Let fi ∈ A (i = 1, 2, · · · , n) satisfy
|zfi′ (z)| ≤ Mi
(Mi ≥ 1;
z ∈ U ).
Let αi , β ∈ C (i = 1, 2, . . . , n) and γ > 0 be the smallest number such that
2
n
X
i=1
Mi |αi | ≤ (2γ + 1)
2γ+1
2γ
.
(11)
Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
Proof.
Define the function h(z) by
h(z) :=
Z
z
exp
0
n
X
!
αi fi (ξ) dξ.
i=1
Then we have h(0) = h′ (0) − 1 = 0. Also a simple computation yields
!
n
X
′
αi fi (z)
h (z) = exp
i=1
and
n
zh′′ (z) X
=
αi zfi′ (z).
′
h (z)
i=1
(12)
By Schwartz’s Lemma, we have |zfi′ (z)| ≤ |z|, (z ∈ U, i = 1, 2, · · · , n), and
therefore we obtain, from (12),
′′
n
n
X
zh (z) X
′
≤
|α
|
|zf
(z)|
≤
(
Mi |αi |)|z|.
i
i
h′ (z)
i=1
i=1
Thus
n
1 − |z|2γ zh′′ (z) |z|(1 − |z|2γ ) X
Mi |αi | (z ∈ U ).
h′ (z) ≤
γ
γ
i=1
For the function Q : [0, 1] → R defined by Q(t) = t(1 − t2γ ), γ > 0, the
maximum is attained at the point t = 1/(2γ + 1)1/2γ and thus we have
Q(t) ≤
2γ
(2γ + 1)
147
2γ+1
2γ
.
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
In view of this inequality and our assumption (11), we obtain
1 − |z|2γ zh′′ (z)
h′ (z) ≤ 1 (z ∈ U )
γ
and, by Theorem 1, Tα1 ,...,αn ;β (z) is univalent in U for β ∈ C with ℜβ ≥ γ.
Also we have the following result.
Theorem 8 Let αi , β ∈ C, 0 ≤ βi ≤ 1 (i = 1, 2, . . . , n). Let fi ∈ Sβ∗i (i =
1, 2, · · · , n) satisfy
|fi (z)| ≤ Mi
(Mi ≥ 1;
z ∈ U;
i = 1, 2, . . . , n).
and γ > 0 be the smallest number such that
2
n
X
i=1
Mi |αi |(1 + βi ) ≤ (2γ + 1)
2γ+1
2γ
.
(13)
Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
Proof.
From (12), we have
′′ X
n
zh (z)
≤
|αi |
h′ (z)
i=1
′
zfi (z)
fi (z) |fi (z)|
′
n
X
zfi (z)
− 1 |fi (z)|
≤
|αi | 1 +
fi (z)
i=1
≤
n
X
i=1
Mi |αi |(1 + βi )|z|.
The remaining part of the proof is similar to the proof of Theorem 7.
Similarly we have the following result.
Theorem 9 Let fi ∈ Sβi (i = 1, 2, · · · , n) satisfy
|fi (z)| ≤ Mi
(Mi ≥ 1;
z ∈ U;
i = 1, 2, . . . , n).
Let αi , β ∈ C, 0 ≤ βi ≤ 1 (i = 1, 2, . . . , n), and γ > 0 be the smallest number
such that
n
X
2γ+1
2
Mi2 |αi |(1 + βi ) ≤ (2γ + 1) 2γ .
(14)
i=1
Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
148
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
References
[1] D. Breaz and N. Breaz, An univalent condition for an integral operator,
Nonlinear Funct. Anal. Appl. 11 (2006), no. 2, 259–263.
[2] N. N. Pascu, On a univalence criterion II, in Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 153–154,
Univ. “Babeş-Bolyai”, Cluj.
[3] N. N. Pascu, An improvement of Becker’s univalence criterion, in Proceedings of the Commemorative Session: Simion Stoı̈low (Braşov, 1987), 43–48,
Univ. Braşov, Braşov.
[4] V. Pescar, New criteria for univalence of certain integral operators,
Demonstratio Math. 33 (2000), no. 1, 51–54.
[5] V. Pescar, Certain sufficient conditions for univalence, Hokkaido Math.
J. 32(2) (2003), 451–455.
[6] V. Pescar and S. Owa, Some criteria for univalence of certain integral
operators, Int. J. Math. Math. Sci. 2004, no. 45-48, 2489–2494.
Author:
V. Ravichandran
Department of Mathematics
University of Delhi
Delhi 110 007 India
email: [email protected]
149
No 17/2009
CRITERIA FOR UNIVALENCE OF CERTAIN
INTEGRAL OPERATORS
V. Ravichandran
Abstract. In this paper, we determine conditions on β, αi and fi (z) so
n R
o1/β
Q
z
that the integral operator β 0 ξ β−1 ni=1 (fi (ξ)/ξ)1/αi dξ
is univalent in
the open unit disk. We also obtain similar results for the integral operator
R z β−1
1
P
β 0 ξ
exp ( ni=1 αi fi (ξ)) dξ β .
2000 Mathematics Subject Classification: 30C45.
1. Introduction
An analytic function that maps different points in the open unit disk U :=
{z ∈ C : |z| < 1} to different points in C is a univalent function. Such functions
have been studied for long time. Let A be the class of all analytic functions
f (z) defined in U and normalized by the conditions f (0) = 0 = f ′ (0) − 1. Let
S be the subclass of A consisting of univalent functions. Pascu [2] has proved
the following theorem:
Theorem 1 ([1],[2]) Let β ∈ C, γ ∈ R and ℜβ ≥ γ > 0. If f ∈ A satisfies
1 − |z|2γ zf ′′ (z)
f ′ (z) ≤ 1 (z ∈ U ),
γ
then the integral operator
Z
Fβ (z) = β
z
ξ
0
is in S.
141
β−1 ′
f (ξ)dξ
β1
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
We denote by Sβ the class of functions f ∈ A satisfying
2 ′
z f (z)
f 2 (z) − 1 < β (0 < β ≤ 1; z ∈ U )
while Sβ∗ denote the class of functions f ∈ A satisfying
′
zf (z)
< β (0 < β ≤ 1; z ∈ U ).
−
1
f (z)
Using Theorem 1, Pescar [4] proved the following theorem.
Theorem 2 ([4]) Let α, β ∈ C and ℜβ ≥ ℜα ≥ 3/|α|. If f ∈ S1 satisfies the
condition
|f (z)| ≤ 1 (z ∈ U ),
then the integral operator
( Z
Hα,β (z) = β
z
ξ β−1
0
f (ξ)
ξ
α1
dξ
) β1
(1)
is in S.
Using Theorem 1, Breaz and Breaz [1] extended Theorem 2 and obtained
the following theorem.
Theorem 3 (Theorem 1, p.260 [1]) Let α, β ∈ C and ℜβ ≥ ℜα > 3n/|α|. If
fi ∈ S1 (i = 1, 2, · · · , n) satisfies the conditions
|fi (z)| ≤ 1
(z ∈ U,
i = 1, 2, · · · , n),
then the integral operator
( Z
Fα,β (z) = β
1
z
ξ β−1
0
n
Y
fi (ξ) α
i=1
ξ
dξ
) β1
is in S.
Using Theorem 1, Pescar [5] obtained the following theorem.
142
(2)
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 4 (Theorem 1, p.452 [5]) Let f ∈ A and β ∈ C satisfies
√
3 3
1 ≤ ℜβ ≤ |β| ≤
.
2
If
then the function
|zf ′ (z)| ≤ 1
Z
Tβ (z) = β
(z ∈ U ),
z
ξ β−1
0
is in S.
β
ef (ξ) dξ
β1
By Schwarz’s Lemma (see below), the only function f ∈ A with |f (z)| ≤ 1
is f (z) = z and hence the hypothesis of Theorem 3–4 are satisfied only by a
single function f (z) = z.
In this paper, we extend Theorem 2 and Theorem 4 to obtain a sufficient
conditions for univalence of a more general integral operator. We also prove
some related results. The class of functions to which our theorems are applicable is non-trivial (when Mi 6= 1 for some i).
To prove our main results, we need the following lemma:
Lemma 1 (Schwarz’s Lemma) If the function w(z) is analytic in the unit
disk U , w(0) = 0 and |w(z)| ≤ 1 for all z ∈ U , then
|w(z)| ≤ |z| (z ∈ U ),
|w′ (0)| ≤ 1
and the either of these equalities holds if and only if w(z) = ǫz, where |ǫ| = 1.
2. Univalence Criteria
For fi ∈ A (i = 1, 2, · · · , n) and α1 , α2 , . . . , αn , β ∈ C, we define an integral
operator by
( Z
Fα1 ,α2 ,··· ,αn ;β (z) := β
1
z
ξ β−1
0
n
Y
fi (ξ) αi
i=1
ξ
dξ
) β1
.
(3)
When α1 = α2 = · · · = αn = α, Fα1 ,α2 ,··· ,αn ;β (z) becomes the integral operator
Fα,β (z) considered in Theorem 3.
143
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 5 Let 0 < βi ≤ 1. Let fi ∈ Sβi (i = 1, 2, · · · , n) satisfy the conditions
|fi (z)| ≤ Mi (Mi ≥ 1; z ∈ U, i = 1, 2, · · · , n).
If α1 , α2 , . . . , αn , β ∈ C, ℜβ ≥ γ and
γ :=
n
X
1 + Mi (1 + βi )
|αi |
i=1
,
(4)
then the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Proof.
Define the function h(z) by
h(z) :=
Z
0
n
zY
i=1
fi (ξ)
ξ
α1
i
dξ.
Then we have h(0) = h′ (0) − 1 = 0. Also a simple computation yields
1
′
h (z) =
n
Y
fi (z) αi
z
i=1
and
n
zh′′ (z) X 1
=
h′ (z)
αi
i=1
zfi′ (z)
−1 .
fi (z)
(5)
From equation (5), we have
′′
n
X
zh (z)
1 zfi′ (z)
≤
+1
h′ (z)
|αi | fi (z)
i=1
n
X
1 z 2 fi′ (z) fi (z)
=
+1 .
|αi | fi2 (z) z
i=1
From the hypothesis, we have |fi (z)| ≤ Mi
by Schwartz Lemma, yields
|fi (z)| ≤ Mi |z| (z ∈ U,
144
(z ∈ U,
(6)
i = 1, 2, · · · , n) which,
i = 1, 2, · · · , n).
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Using this inequality in the inequality (6), we obtain
′′
2 ′
n
X
zh (z)
z fi (z)
1
≤
+1
Mi 2
h′ (z)
|αi |
fi (z)
i=1
2 ′
n
X
z fi (z)
1
Mi 2
− 1 + 1 + Mi .
≤
|α
|
f
(z)
i
i
i=1
Since fi ∈ Sβi , in view of (4), the equation (7) yields
′′
n
X
zh (z)
1 + Mi (1 + βi )
<
= γ.
h′ (z)
|αi |
i=1
(7)
(8)
Multiply (8) by
1 − |z|2γ
,
γ
we obtain
1 − |z|2γ
γ
′′
zh (z)
2γ
h′ (z) ≤ 1 − |z| < 1 (z ∈ U ).
Since ℜβ ≥ γ > 0, it follows from Theorem 1 that
β1
Z z
β−1 ′
ξ h (ξ)dξ ∈ S.
β
0
Since
Z
β
0
z
ξ β−1 h′ (ξ)dξ
β1
( Z
= β
1
z
ξ β−1
0
n
Y
fi (ξ) αi
i=1
ξ
dξ
) β1
= Fα1 ,α2 ,··· ,αn ;β (z),
the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Theorem 6 Let α1 , α2 , . . . , αn , β ∈ C, 0 < βi ≤ 1 (i = 1, 2, . . . , n) and
ℜβ ≥ γ :=
n
X
βi
.
|α
|
i
i=1
(9)
If fi ∈ Sβ∗i (i = 1, 2, · · · , n), then the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is
in S.
145
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Proof.
From (5), we get
′′
′
n
zh (z) X
zfi (z)
1
≤
−
1
h′ (z)
fi (z)
|α
|
i
i=1
and by using (9) and fi ∈ Sβ∗i , we obtain
′′
n
zh (z) X
βi
≤
= γ.
h′ (z)
|α
|
i
i=1
This, as in the proof of Theorem 5, shows that
1 − |z|2γ zh′′ (z)
h′ (z) < 1 (z ∈ U )
γ
and therefore, by Theorem 1,
Z
β
z
ξ β−1 h′ (ξ)dξ
0
β1
∈ S.
Therefore the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Example 1 Let α, β ∈ C, 0 < βi ≤ 1 (i = 1, 2, . . . , n) satisfy
n
1 X
ℜβ ≥
βi .
|α| i=1
If fi ∈ Sβ∗i (i = 1, 2, · · · , n), then the function Fα,β (z) defined by (2) is in S.
β1
and f ∈ Sβ∗1 , then the
In particular, if α, β ∈ C, 0 < β1 ≤ 1 satisfy ℜβ ≥ |α|
function Hα,β (z) defined by (1) is in S.
For i = 1, 2, . . . , n, let αi , β ∈ C and fi (z) ∈ A. Define the integral operator
Tα1 ,...,αn ;β (z) by
( Z
Tα1 ,...,αn ;β (z) = β
z
ξ β−1 exp
0
n
X
i=1
146
!
αi fi (ξ) dξ
) β1
.
(10)
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 7 Let fi ∈ A (i = 1, 2, · · · , n) satisfy
|zfi′ (z)| ≤ Mi
(Mi ≥ 1;
z ∈ U ).
Let αi , β ∈ C (i = 1, 2, . . . , n) and γ > 0 be the smallest number such that
2
n
X
i=1
Mi |αi | ≤ (2γ + 1)
2γ+1
2γ
.
(11)
Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
Proof.
Define the function h(z) by
h(z) :=
Z
z
exp
0
n
X
!
αi fi (ξ) dξ.
i=1
Then we have h(0) = h′ (0) − 1 = 0. Also a simple computation yields
!
n
X
′
αi fi (z)
h (z) = exp
i=1
and
n
zh′′ (z) X
=
αi zfi′ (z).
′
h (z)
i=1
(12)
By Schwartz’s Lemma, we have |zfi′ (z)| ≤ |z|, (z ∈ U, i = 1, 2, · · · , n), and
therefore we obtain, from (12),
′′
n
n
X
zh (z) X
′
≤
|α
|
|zf
(z)|
≤
(
Mi |αi |)|z|.
i
i
h′ (z)
i=1
i=1
Thus
n
1 − |z|2γ zh′′ (z) |z|(1 − |z|2γ ) X
Mi |αi | (z ∈ U ).
h′ (z) ≤
γ
γ
i=1
For the function Q : [0, 1] → R defined by Q(t) = t(1 − t2γ ), γ > 0, the
maximum is attained at the point t = 1/(2γ + 1)1/2γ and thus we have
Q(t) ≤
2γ
(2γ + 1)
147
2γ+1
2γ
.
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
In view of this inequality and our assumption (11), we obtain
1 − |z|2γ zh′′ (z)
h′ (z) ≤ 1 (z ∈ U )
γ
and, by Theorem 1, Tα1 ,...,αn ;β (z) is univalent in U for β ∈ C with ℜβ ≥ γ.
Also we have the following result.
Theorem 8 Let αi , β ∈ C, 0 ≤ βi ≤ 1 (i = 1, 2, . . . , n). Let fi ∈ Sβ∗i (i =
1, 2, · · · , n) satisfy
|fi (z)| ≤ Mi
(Mi ≥ 1;
z ∈ U;
i = 1, 2, . . . , n).
and γ > 0 be the smallest number such that
2
n
X
i=1
Mi |αi |(1 + βi ) ≤ (2γ + 1)
2γ+1
2γ
.
(13)
Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
Proof.
From (12), we have
′′ X
n
zh (z)
≤
|αi |
h′ (z)
i=1
′
zfi (z)
fi (z) |fi (z)|
′
n
X
zfi (z)
− 1 |fi (z)|
≤
|αi | 1 +
fi (z)
i=1
≤
n
X
i=1
Mi |αi |(1 + βi )|z|.
The remaining part of the proof is similar to the proof of Theorem 7.
Similarly we have the following result.
Theorem 9 Let fi ∈ Sβi (i = 1, 2, · · · , n) satisfy
|fi (z)| ≤ Mi
(Mi ≥ 1;
z ∈ U;
i = 1, 2, . . . , n).
Let αi , β ∈ C, 0 ≤ βi ≤ 1 (i = 1, 2, . . . , n), and γ > 0 be the smallest number
such that
n
X
2γ+1
2
Mi2 |αi |(1 + βi ) ≤ (2γ + 1) 2γ .
(14)
i=1
Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
148
V. Ravichandran - Criteria for Univalence of Certain Integral Operators
References
[1] D. Breaz and N. Breaz, An univalent condition for an integral operator,
Nonlinear Funct. Anal. Appl. 11 (2006), no. 2, 259–263.
[2] N. N. Pascu, On a univalence criterion II, in Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 153–154,
Univ. “Babeş-Bolyai”, Cluj.
[3] N. N. Pascu, An improvement of Becker’s univalence criterion, in Proceedings of the Commemorative Session: Simion Stoı̈low (Braşov, 1987), 43–48,
Univ. Braşov, Braşov.
[4] V. Pescar, New criteria for univalence of certain integral operators,
Demonstratio Math. 33 (2000), no. 1, 51–54.
[5] V. Pescar, Certain sufficient conditions for univalence, Hokkaido Math.
J. 32(2) (2003), 451–455.
[6] V. Pescar and S. Owa, Some criteria for univalence of certain integral
operators, Int. J. Math. Math. Sci. 2004, no. 45-48, 2489–2494.
Author:
V. Ravichandran
Department of Mathematics
University of Delhi
Delhi 110 007 India
email: [email protected]
149