paper 15-17-2009. 112KB Jun 04 2011 12:03:07 AM

ACTA UNIVERSITATIS APULENSIS

No 17/2009

CRITERIA FOR UNIVALENCE OF CERTAIN
INTEGRAL OPERATORS

V. Ravichandran
Abstract. In this paper, we determine conditions on β, αi and fi (z) so
n R
o1/β
Q
z
that the integral operator β 0 ξ β−1 ni=1 (fi (ξ)/ξ)1/αi dξ
is univalent in
the open unit disk. We also obtain similar results for the integral operator
 R z β−1
1
P
β 0 ξ
exp ( ni=1 αi fi (ξ)) dξ β .

2000 Mathematics Subject Classification: 30C45.
1. Introduction
An analytic function that maps different points in the open unit disk U :=
{z ∈ C : |z| < 1} to different points in C is a univalent function. Such functions
have been studied for long time. Let A be the class of all analytic functions
f (z) defined in U and normalized by the conditions f (0) = 0 = f ′ (0) − 1. Let
S be the subclass of A consisting of univalent functions. Pascu [2] has proved
the following theorem:
Theorem 1 ([1],[2]) Let β ∈ C, γ ∈ R and ℜβ ≥ γ > 0. If f ∈ A satisfies


1 − |z|2γ zf ′′ (z)
f ′ (z) ≤ 1 (z ∈ U ),
γ

then the integral operator

 Z
Fβ (z) = β


z

ξ

0

is in S.
141

β−1 ′

f (ξ)dξ

 β1

V. Ravichandran - Criteria for Univalence of Certain Integral Operators
We denote by Sβ the class of functions f ∈ A satisfying
2 ′

z f (z)




f 2 (z) − 1 < β (0 < β ≤ 1; z ∈ U )

while Sβ∗ denote the class of functions f ∈ A satisfying



zf (z)
< β (0 < β ≤ 1; z ∈ U ).


1

f (z)

Using Theorem 1, Pescar [4] proved the following theorem.

Theorem 2 ([4]) Let α, β ∈ C and ℜβ ≥ ℜα ≥ 3/|α|. If f ∈ S1 satisfies the

condition
|f (z)| ≤ 1 (z ∈ U ),
then the integral operator
( Z
Hα,β (z) = β

z

ξ β−1

0



f (ξ)
ξ

 α1




) β1

(1)

is in S.
Using Theorem 1, Breaz and Breaz [1] extended Theorem 2 and obtained
the following theorem.
Theorem 3 (Theorem 1, p.260 [1]) Let α, β ∈ C and ℜβ ≥ ℜα > 3n/|α|. If
fi ∈ S1 (i = 1, 2, · · · , n) satisfies the conditions
|fi (z)| ≤ 1

(z ∈ U,

i = 1, 2, · · · , n),

then the integral operator
( Z
Fα,β (z) = β


1

z

ξ β−1

0


n 
Y
fi (ξ) α
i=1

ξ



) β1


is in S.
Using Theorem 1, Pescar [5] obtained the following theorem.
142

(2)

V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 4 (Theorem 1, p.452 [5]) Let f ∈ A and β ∈ C satisfies

3 3
1 ≤ ℜβ ≤ |β| ≤
.
2
If
then the function

|zf ′ (z)| ≤ 1
 Z
Tβ (z) = β


(z ∈ U ),

z

ξ β−1

0

is in S.


ef (ξ) dξ

 β1

By Schwarz’s Lemma (see below), the only function f ∈ A with |f (z)| ≤ 1
is f (z) = z and hence the hypothesis of Theorem 3–4 are satisfied only by a
single function f (z) = z.
In this paper, we extend Theorem 2 and Theorem 4 to obtain a sufficient
conditions for univalence of a more general integral operator. We also prove

some related results. The class of functions to which our theorems are applicable is non-trivial (when Mi 6= 1 for some i).
To prove our main results, we need the following lemma:
Lemma 1 (Schwarz’s Lemma) If the function w(z) is analytic in the unit
disk U , w(0) = 0 and |w(z)| ≤ 1 for all z ∈ U , then
|w(z)| ≤ |z| (z ∈ U ),

|w′ (0)| ≤ 1

and the either of these equalities holds if and only if w(z) = ǫz, where |ǫ| = 1.
2. Univalence Criteria
For fi ∈ A (i = 1, 2, · · · , n) and α1 , α2 , . . . , αn , β ∈ C, we define an integral
operator by
( Z
Fα1 ,α2 ,··· ,αn ;β (z) := β

1

z

ξ β−1


0


n 
Y
fi (ξ) αi
i=1

ξ



) β1

.

(3)

When α1 = α2 = · · · = αn = α, Fα1 ,α2 ,··· ,αn ;β (z) becomes the integral operator

Fα,β (z) considered in Theorem 3.
143

V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 5 Let 0 < βi ≤ 1. Let fi ∈ Sβi (i = 1, 2, · · · , n) satisfy the conditions
|fi (z)| ≤ Mi (Mi ≥ 1; z ∈ U, i = 1, 2, · · · , n).
If α1 , α2 , . . . , αn , β ∈ C, ℜβ ≥ γ and
γ :=

n
X
1 + Mi (1 + βi )

|αi |

i=1

,

(4)

then the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Proof.

Define the function h(z) by
h(z) :=

Z

0

n 
zY
i=1

fi (ξ)
ξ

 α1

i

dξ.

Then we have h(0) = h′ (0) − 1 = 0. Also a simple computation yields
1



h (z) =


n 
Y
fi (z) αi
z

i=1

and

n

zh′′ (z) X 1
=
h′ (z)
αi
i=1




zfi′ (z)
−1 .
fi (z)

(5)

From equation (5), we have


′′


n
X
zh (z)
1 zfi′ (z)


+1
h′ (z)
|αi | fi (z)
i=1




n
X
1 z 2 fi′ (z) fi (z)
=
+1 .
|αi | fi2 (z) z
i=1

From the hypothesis, we have |fi (z)| ≤ Mi
by Schwartz Lemma, yields
|fi (z)| ≤ Mi |z| (z ∈ U,

144

(z ∈ U,

(6)

i = 1, 2, · · · , n) which,

i = 1, 2, · · · , n).

V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Using this inequality in the inequality (6), we obtain
′′

 2 ′
n
X
zh (z)
z fi (z)
1




+1
Mi 2
h′ (z)
|αi |
fi (z)
i=1


 2 ′
n
X

z fi (z)
1
Mi 2
− 1 + 1 + Mi .


|
f
(z)
i
i
i=1
Since fi ∈ Sβi , in view of (4), the equation (7) yields
′′
n
X
zh (z)
1 + Mi (1 + βi )
<

= γ.
h′ (z)
|αi |
i=1

(7)

(8)

Multiply (8) by

1 − |z|2γ
,
γ

we obtain
1 − |z|2γ
γ

′′
zh (z)



h′ (z) ≤ 1 − |z| < 1 (z ∈ U ).

Since ℜβ ≥ γ > 0, it follows from Theorem 1 that
 β1
 Z z
β−1 ′
ξ h (ξ)dξ ∈ S.
β
0

Since
 Z
β

0

z

ξ β−1 h′ (ξ)dξ

 β1

( Z
= β

1

z

ξ β−1

0


n 
Y
fi (ξ) αi
i=1

ξ



) β1

= Fα1 ,α2 ,··· ,αn ;β (z),

the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Theorem 6 Let α1 , α2 , . . . , αn , β ∈ C, 0 < βi ≤ 1 (i = 1, 2, . . . , n) and
ℜβ ≥ γ :=

n
X
βi
.

|
i
i=1

(9)

If fi ∈ Sβ∗i (i = 1, 2, · · · , n), then the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is
in S.
145

V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Proof.

From (5), we get
′′


n
zh (z) X
zfi (z)

1





1
h′ (z)
fi (z)


|
i
i=1

and by using (9) and fi ∈ Sβ∗i , we obtain

′′
n
zh (z) X
βi


= γ.
h′ (z)

|
i
i=1

This, as in the proof of Theorem 5, shows that


1 − |z|2γ zh′′ (z)
h′ (z) < 1 (z ∈ U )
γ

and therefore, by Theorem 1,

 Z
β

z

ξ β−1 h′ (ξ)dξ

0

 β1

∈ S.

Therefore the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S.
Example 1 Let α, β ∈ C, 0 < βi ≤ 1 (i = 1, 2, . . . , n) satisfy
n

1 X
ℜβ ≥
βi .
|α| i=1
If fi ∈ Sβ∗i (i = 1, 2, · · · , n), then the function Fα,β (z) defined by (2) is in S.
β1
and f ∈ Sβ∗1 , then the
In particular, if α, β ∈ C, 0 < β1 ≤ 1 satisfy ℜβ ≥ |α|
function Hα,β (z) defined by (1) is in S.
For i = 1, 2, . . . , n, let αi , β ∈ C and fi (z) ∈ A. Define the integral operator
Tα1 ,...,αn ;β (z) by
( Z
Tα1 ,...,αn ;β (z) = β

z

ξ β−1 exp

0

n
X
i=1

146

!

αi fi (ξ) dξ

) β1

.

(10)

V. Ravichandran - Criteria for Univalence of Certain Integral Operators
Theorem 7 Let fi ∈ A (i = 1, 2, · · · , n) satisfy
|zfi′ (z)| ≤ Mi

(Mi ≥ 1;

z ∈ U ).

Let αi , β ∈ C (i = 1, 2, . . . , n) and γ > 0 be the smallest number such that
2

n
X
i=1

Mi |αi | ≤ (2γ + 1)

2γ+1


.

(11)

Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
Proof.

Define the function h(z) by
h(z) :=

Z

z

exp

0

n
X

!

αi fi (ξ) dξ.

i=1

Then we have h(0) = h′ (0) − 1 = 0. Also a simple computation yields
!
n
X

αi fi (z)
h (z) = exp
i=1

and

n

zh′′ (z) X
=
αi zfi′ (z).

h (z)
i=1

(12)

By Schwartz’s Lemma, we have |zfi′ (z)| ≤ |z|, (z ∈ U, i = 1, 2, · · · , n), and
therefore we obtain, from (12),
′′
n
n
X
zh (z) X




|
|zf
(z)|

(
Mi |αi |)|z|.
i
i
h′ (z)
i=1
i=1

Thus



n
1 − |z|2γ zh′′ (z) |z|(1 − |z|2γ ) X
Mi |αi | (z ∈ U ).
h′ (z) ≤
γ
γ
i=1

For the function Q : [0, 1] → R defined by Q(t) = t(1 − t2γ ), γ > 0, the
maximum is attained at the point t = 1/(2γ + 1)1/2γ and thus we have
Q(t) ≤


(2γ + 1)
147

2γ+1


.

V. Ravichandran - Criteria for Univalence of Certain Integral Operators
In view of this inequality and our assumption (11), we obtain


1 − |z|2γ zh′′ (z)
h′ (z) ≤ 1 (z ∈ U )
γ

and, by Theorem 1, Tα1 ,...,αn ;β (z) is univalent in U for β ∈ C with ℜβ ≥ γ.
Also we have the following result.

Theorem 8 Let αi , β ∈ C, 0 ≤ βi ≤ 1 (i = 1, 2, . . . , n). Let fi ∈ Sβ∗i (i =
1, 2, · · · , n) satisfy
|fi (z)| ≤ Mi

(Mi ≥ 1;

z ∈ U;

i = 1, 2, . . . , n).

and γ > 0 be the smallest number such that
2

n
X
i=1

Mi |αi |(1 + βi ) ≤ (2γ + 1)

2γ+1


.

(13)

Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
Proof.

From (12), we have
′′ X
n
zh (z)


|αi |
h′ (z)
i=1


zfi (z)


fi (z) |fi (z)|



n
X

zfi (z)
− 1 |fi (z)|

|αi | 1 +
fi (z)
i=1


n
X
i=1

Mi |αi |(1 + βi )|z|.

The remaining part of the proof is similar to the proof of Theorem 7.
Similarly we have the following result.
Theorem 9 Let fi ∈ Sβi (i = 1, 2, · · · , n) satisfy
|fi (z)| ≤ Mi

(Mi ≥ 1;

z ∈ U;

i = 1, 2, . . . , n).

Let αi , β ∈ C, 0 ≤ βi ≤ 1 (i = 1, 2, . . . , n), and γ > 0 be the smallest number
such that
n
X
2γ+1
2
Mi2 |αi |(1 + βi ) ≤ (2γ + 1) 2γ .
(14)
i=1

Then, for β ∈ C, ℜβ ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S.
148

V. Ravichandran - Criteria for Univalence of Certain Integral Operators
References
[1] D. Breaz and N. Breaz, An univalent condition for an integral operator,
Nonlinear Funct. Anal. Appl. 11 (2006), no. 2, 259–263.
[2] N. N. Pascu, On a univalence criterion II, in Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 153–154,
Univ. “Babeş-Bolyai”, Cluj.
[3] N. N. Pascu, An improvement of Becker’s univalence criterion, in Proceedings of the Commemorative Session: Simion Stoı̈low (Braşov, 1987), 43–48,
Univ. Braşov, Braşov.
[4] V. Pescar, New criteria for univalence of certain integral operators,
Demonstratio Math. 33 (2000), no. 1, 51–54.
[5] V. Pescar, Certain sufficient conditions for univalence, Hokkaido Math.
J. 32(2) (2003), 451–455.
[6] V. Pescar and S. Owa, Some criteria for univalence of certain integral
operators, Int. J. Math. Math. Sci. 2004, no. 45-48, 2489–2494.
Author:
V. Ravichandran
Department of Mathematics
University of Delhi
Delhi 110 007 India
email: [email protected]

149

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52