Matriks dan Ruang Vektor

  O p e ra si Alja b a r Ma triks

1 Matriks dan Ruang Vektor

  M a t rik s I nve r s Definisi : Bila A.B = B.A = I, maka A dan B saling invers

  • -1

  Notasi invers A adalah A Sifat-sifat Matriks Invers

Jika A dan B non singular, atau invertibel,

  • 1 -1

  ( . ) A B

  

  1 = B .A

  A matriks bujur sangkar, maka :  

  A n = A.A.A. .. A n faktor

  A = I

  • 1 -1 -1

    . .

     

  A A A n n

    

   = A = A .. A n faktor

  1

  1

  • 1
  • 1

    p A A . .

   

  1

  1 = p = 1/ p A

  A A n m . = A n + m

    A n m

  = A n.m

  • 1

  Contoh : A = 1 2 3 4 A = ?

     

     

  1 Misalkan A

     

  

 

   

       

       

    1 = a b c d

  1 2 3 4 a b c d

  = 1 0 0 1 

       

        

   

  1

  1 = 4d 3b 4c 3a 2d b 2c a

a+2c = 1 b+2d = 0

3a+4c= 0 3b+4d= 1

a+2c =1 x2 2a+4c =2 3a+ 4c=0 x1 3a+4c =0 -

  • a =2

  3a + 4c =0 4c = -3 4 )

  2 (

  3

  4

  3    

   a c

  2

  1

  1

  2

  3  

  c b+2d =0 x2 2b+4d =0 3b+4d =1 x1 3b+4d =1 -

  • b = -1

     

       

    1/2 - 1/2

  1

  1 2 - = d c b a = 1 A b + 2d = 0.

  2d = -b

  2

  1

  2

  1

  2  

   

   

  b d

  a ta u A

  1

  = 1 / A / adj (A)

  A    

  • 3 1
  • >2
  • 2
  •     1

      4 = 1

         

      

    • 1

      2 4 - 2

    • 3 1
    • 2 1

        

    1. Rumus p e nye le sa ia n Ma triks Inve rs

      

    1 A A

      . = I

    OBE -1 2.

      A

         

       

      / I  I / A 

      

      1 3.

      A = 1 . adj (A) / A / t

      1

      1 = A

      4

      2

      5

      3

      6

         

         

      2

      Matriks Transp o se

    Ma triks tra nsp o se d ip e ro le h d e ng a n me nuka r e le me n-e le me n

    b a ris me n-ja d i e le me n-e le me n ko lo m d a n se -b a liknya .

      3

      4

      5

      6

       

         

      C o nto h : Tra nsp o se d a ri A a d a la h :

    • A
    Sifa t-sifa t ma triks tra nsp o se t t 1.

      A

      = A

        t t t 2.

       A + B = A B   t t 3.

      (p . A) = p . A 4. t t t A . B = B A .

        C o nto h p e mb uktia n sifa t ma triks tra nsp o se :

         

      2

      3

      3

      1 A dan B  = Ma ka Pe mb uktia n sifa t 1: Pe mb uktia n sifa t 2 :

         

      5 ) ( ,

           

         

        

      6

      4

      5

      5

      6

      5

      4

      6

      

      5

      4

      5

      2

      4

      1

      3

      4

      1

      3

         

            

         

         

          

      2

      1

      4

      3

      4

      3

      1

      2 = A t t

    B dan

        A t

        

         

         

        

      4

      1

      3

      2

      4

      3

      1

      2 = A

      t t    

      2 = B A t t B A maka

         

      1

      Terbukti bahwa t t t B A B A

      2 = B A t t

      1

      3

      4

      3

      4

      2

         

      

    5

      5

      4

      6

        

         

           

         ) ( Contoh pembuktian sifat 3 :

    2 A 5 =

         

      5

      2 t

      1

      10

      5

         

      5 t t A maka

      3

      1

      4

      10

      15

      20

           

      10 ) , 5 (

      15

      5

      20

      10

      5

      15

      20

          

         

         

          Te rb ukti b a hwa C o nto h p e mb uktia n sifa t 4 : t t A A

      5 ) 5 ( 

      4

      12

      6

      2

      4

      1

      3

      1

      6

      3

      2 = B .

      A  

        

      19

      t m

      2

      3

        

        

        

         

        

         

         

        

        

      16

      9

      19

      8

      18

      8

      1

    18 B) . (A aka

      t

    adalah symetric

    A - A t adalah skew symetric

      2

      3

      12

      6

      4

      3

      1

      2

      2

      1

      4

      3 .

      t t A B t t t

      A B B A . ) . ( 

      A

      16

      6

      Te rb ukti b a hwa Sifa t ma triks b ujur sa ng ka r A

        

        

        

         

        

         

         

        

      1

        

      

      9

      8

      19

      18

      8

    • A

    3. A d a p a t d itulis se b a g a i jumla h d a ri sua tu

      t ma triks syme tric B = 1/ 2 d a n sua tu

      A

      ( + A )

      t

      ( A ) So a l La tiha n :

    • ma triks ske w syme tric C = 1/ 2 A

      1.

           t

           t

           

      1 =  

      

    3

    1 - 2 - 1 -

      1 3 - 1 4 -

      2

      4

      A maka A ..... : ,

    1 -

           

      2.

      1 =

      2

      2

      3

      1

      1

      1

      ..... : ,

      A maka A

      Matriks Ese lo n dan Matriks Ese lo n te re duksi A

      De finisi : d ise b ut ma triks te re d uksi = adj   m x m b ila me me nuhi :

      1. Bila a d a b a ris ya ng ta k se mua no l, ma ka e le me n p e rta ma ya ng  0 ha rus b ila ng a n 1

      2. Ele me n p e rta ma ya ng 0 p a d a b a ris  d ib a wa hnya ha rus d ise b e la h ka na n 1

      3. Ba ris ya ng se mua no l ha rus p a d a b a g ia n b a wa h (b a ris-b a ris b a wa h)

      Ma triks Ese lo n (Elimina si G a uss)

      5

      2

      3

      4

      5

      6

      1

      2

      3

      4

      1

                 

      2

      3

      4

      1

      2

      3

      1

      2

      1

      1 Ma triks Ese lo n Te re d uksi (Elimina si G a uss Jo rd a n):         

              

      1

      1

      1

      1

      1

      1 C o nto h Ma triks Ese lo n C o nto h Ma triks Ese lo n Te re d uksi

      1 2 4 0 1 7 0 0 1

          

          

      1 0 0  

      O p e rasi Baris Ele m e nte r (O BE) De finisi : b = me nuka r b a ris ke i d e ng a n b a ris ke j ij b (p ) = me ng a lika n b a ris ke i d e ng a n p i b (p ) = b + p .b ij i j G a nti b a ris ke i d e ng a n b a ris b a ru ya ng me rup a ka n b a ris ke i d ita mb a h d e ng a n b a ris ke j ya ng d ika lika n d e ng a n p .

      3 = 0 20 28

          

      2 = 3 6 9 4b

           b

         

      4 5 6 3 26 37 0 5 7 

        ( ) .

          

          

          

          

          

      3

      C o nto h :

      2

      2

      23

      12 2(3)

      3 6 9 0 5 7 b b b b

      1 2 3 0 5 7 b 4 5 6

      4 2 3 4 5 6 0 5 7 b 5 6

      4

      4

      1

    Ma triks Ele me nte r d a n sifa t-sifa tnya : De finisi : A nxn d ise b ut ma triks e le me nte r, b ila d e ng a n se ka li me la kuka n O BE te rha d a p I n d i p e ro le h A nxn C o nto h :

      I = 1 0 0 0 1 0 0 0 1

      E = 1 0 0 0 5 0 0 0 1 3 b 2

         

           

         

          ( ) 5 b 3 2 I =

      1 0 0 0 1 0 ( / ) 1 5       

        I = 1 0 0 0 1 0 0 0 1

      = 0 1 0 1 0 0 0 0 1 3 b 12

           

      4

          

         

      ( )     

      I = 1 0 0 0 1 0 0 0 1 32 3 3 2 3 ( )

      4 b b b b

      4

      ( ) .

         

            

         

         

      E = 1 0 0 0 1 0 0 4 1 3 32 3 3 2

      I = 1 0 0 0 1 0 0 0 1 b b b b

         

           

      1 0 0 0 1 0 0 0 1   

          E b 3 12 I =

      

             

      4 E = Matriks elementer, maka E.A = matriks baru

    yang terjadi bila OBE tersebut dilakukan pada matriks A C o nto h :

      

      1 2  

      3 4 

      b

      A 12    

    •  

      3

      4

      1

      2     1 0 0 1

         

      b 12

       I = E =

      2

            0 1 1 0    

      1 2  

      3 4  E.A = =

       1  

           

      1

      3

      4

      1

      2       Se tia p Ma triks Ele me nte r a d a la h ma triks ta k sing ula r.

      Inve rs ma triks e le me nte r jug a ma triks e le me nte r.

      I O BE E -1 ma ka E jug a e le me nte r C a ra p e nye le sa ia n inve rs ma triks d e ng a n O BE.

    • 1

      (AI) OBE (I A ) C o nto h 1:

       

      1

      2

      

      1 A maka A

      = , : ?  

      3

      4 So lusi :  

      1  b ( ) 2

      1

      2

      1

      1

      2

      1     b (-3) 21

      2    

             

      3

      4

      1 - -

      2

      3

      1        

      1

      2

      1

      1

      2 1 - b (-2) 12

             

      1

      1

      1

      1 Ja d i    

         

      

    • 2

      2

      1

      1

      1

      1 2 - =

    1 A

      )

      6

      (B  I) OBE ( I B

       B maka B

           

         

      1  

      2

      

    6

      C o nto h 2 : So lusi :

      2

      8

      

    6

      2

      8

      

    8

      ? ,

    • 1

      31

      1

      1

      1     

      

         ) 2 ( b ) 2 / 1 ( b 21 1 1/2

      3

      3

      

    1

      1

      6

      6

      2

      

      1

      3 3 1/2  

      1

      3 3 1/2  b ( 12 3 ) b ( 1 / 2 )       

            2 -

      1 2 1 1/2 1/2 b ( 32 2 )         

    • 1

         

      2 2 -

      1

      1

      2 2 -

      1

      1     1

      

      1

      3

      2

      1 2   b ( 1 / 2 ) 3

    •      1 1/2 1/2 

         2 -

      1

      1  

       

      1

      3

      2

    • 1

      1

      2 

       b ( 13 3 )

      1

      1

          

      2

      2

      1

      1

      1 1 -

      2 = B

      Jadi

      1 -

          

    • 2

      1

      1

      2

      1

      2

      1

      2

      1

      2

      1

      1 0 0 2 0 -1 1 0 - 0 0 0 1 0 -

      33

      1

    • 1
    • 2

      2

      2

              

              

      I

    3 B

      Ma triks ya ng tid a k me mp unya i inve rs C o nto h :      

    1 B

      

      2

      ) 1 ( b ) 2 ( b b

      1

      1

      2

      1

      2

      1 1 -

      1

      1

      1

      1

      3

         

        23 31 21

           

       

         

      1

      2

      2

      1 1 -

      1

      2

      1 2 - 3 - 3 -

          

      1

      )

    3 (

    )

    1 (

    32 12 b b

      1

      1

      2

      1

      1

      1

      1 1 -

      1 2 - 3 - 3 -

      1

          

      2

      1 1 -

      1

      1 5 - 1 1 -

      3

      

          

          

             

      

    Sebelah kiri bukan matriks identitas, maka Matriks

    B tak mempunyai invers.

      So a l la tiha n : 1) C a ri inve rs ma triks d a ri 2) C a ri inve rs ma triks d a ri

      A = 2 1 1

          

          

    • 1 2 1 1 -1 2

      A = 3 4 -1 1 0 3 

          