Distribusi Markov-Binomial Negatif

DAFTAR PUSTAKA
Barbour, A.D., dan Lindvall, T. 2006. Translated Poisson approximation for Markov
chains. Journal of Theoretical Probability 19: hal. 609-630.
Cekanavicius, V., dan Roos, B. 2007. Binomial approximation to the Markov binomial
distribution. Acta Applicandae Mathematicae 96: hal. 137-146.
Cekanavicius, V., dan Roos, B. 2009. Poisson type approximation to the Markov
binomial distribution. Stochastic Process and their Applications 119(1): hal.
190-207.
Clay, Oliver. 2001. Standard Deviations and Correlations of GC Levels in DNA Sequences. Gene 276: hal. 33-38.
Dekking, M., dan Kong, D. 2011. Multimodallity of the Markov Binomial Distribution.
math.PR/1102.3613 v1 preprint, Cornell arXiv.
Dumitrescu, Monica. 2002. Statistical inference for two Markov binomial models with
applications. Statistical Papers 43: hal. 579-585.
Economou, A., dan Kapodistria, S. 2009. q-Series in Markov Chain with Binomial
Transitions. Probability in the Engineering and Informatical Sciences. 23: hal.
75-99.
Evans, M., Hastings, N., dan Peacock, B. 2000. ”Bernoulli Distribution.” Ch. 4 in
Statistical Distributions, 3rd ed. New York: Wiley, hal. 31-33.
Ghitany, M., E., Al-Awadhi, S., A., dan Kalla, S., L. 2002. On Hypergeometric Generalized Negative Binomial Distribution. International Journal of Mathematics
and Mathematical Sciences 29: hal. 727-736.
Inoue, K., dan Aki, S. 2007. Joint distribution of numbers of runs of specified lengths

in a sequence of Markov dependent multistate trials. Annals of the Institute
Statistical Mathematics 59: hal. 577-595.
Montgomery, D.C. 2009. Introduction to Statistical Quality Control, 6th Edition. Danvers: John Wiley & Sons, Inc.
Omey E. dan Van Gulck S. 2006. Markovian Black and Scholes. Publications de
L’institut Mathematique 79: hal. 65-72.
Omey, E., Santos, J., dan Van Gulck, S. 2008. A markov-binomial distribution. Applicable Analysis and Discrete Mathematics 2: hal. 38-50.
Omey, E., dan Van Gulck, S. 2008. Singles in a Markov chain. Publications de
L’institut Mathematique Nouvelle Serie 83(97): hal. 27-35.
Ross, G.,J., Tasoulis, D., K., dan Adams, N., M. 2012. Sequential monitoring of a
Bernoulli sequence when the pre-change parameter is unknown. Computational
Statistics : hal. 190-207.
Taylor, H. M., dan Karlin, S. 1994. An Introduction to Stochastic Modelling. Revised
Ed. New York: Academic Press

37
Universitas Sumatera Utara

38
Wang, Y. H. 1981. On the limit of the Markov binomial distribution. Journal of
Applied Probability 18: hal. 937-942

Xia, A., dan Zhang, M. 2009. On approximation of Markov binomial distributions.
Bernoulli 15: hal. 1335-1350
Yang, G., dan Miaou, Y. 2010. Moderate and Large Deviation Estimate for the
Markov-Binomial Distribution. Acta Applicandae Mathematicae 110: hal. 737747.

Universitas Sumatera Utara