paper 09-18-2009. 121KB Jun 04 2011 12:03:06 AM

ACTA UNIVERSITATIS APULENSIS

No 18/2009

AMENABILITY AND WEAK AMENABILITY OF LIPSCHITZ
OPERATORS ALGEBRAS

A.A. Shokri, A. Ebadian and A.R. Medghalchi
Abstract. In a recent paper by H.X. Cao, J.H. Zhang and Z.B. Xu a
α-Lipschitz operator from a compact metric space into a Banach space A is
defined and characterized in a natural way in the sence that F : K → A is
a α-Lipschitz operator if and only if for each σ ∈ X ∗ the mapping σoF is a
α-Lipschitz function. The Lipschitz operators algebras Lα (K, A) and lα (K, A)
are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that Lα (K, A)
ˇ and lα (K)⊗A
ˇ respecand lα (K, A) are isometrically isomorphic to Lα (K)⊗A
tively.
2000 Mathematics Subject Classification: 47B48, 46J10.
1. Introduction
Let (K, d) be compact metric space with at least two elements and (X, k . k)
be a Banach space over the scaler field F (= R or C). For a constant α > 0

and an operator T : K → X, set
Lα (T ) := sup
s6=t

k T (t) − T (s) k
,
d(s, t)α

which is called the Lipschitz constant of T . Define
T (x) − T (y)
d(x, y)α
α
L (K, X) = {T : K → X
Tα (x, y) =

,
:

x 6= y
Lα (T ) < ∞}


and
lα (K, X) = {T : K → X

: k Tα (x, y) k→ 0 as d(x, y) → 0}.
87

(1)

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
The elements of Lα (K, X) and lα (K, X) are called big and little Lipschitz
operators, respectively [1].
Let C(K, X) be the set of all continuous operators from K into X and for
each T ∈ C(K, X), define
k T k∞ = sup k T (x) k
x∈K

For S, T in C(K, X) and λ in F, define
(S + T )(x) = S(x) + T (x) ,


(λT )(x) = λT (x),

(x ∈ X).

It is easy to see that (C(K, X), k . k∞ ) becomes a Banach space over F and
Lα (K, X) is a linear subspace of C(K, X). For each element T of Lα (K, X),
define k T kα = Lα (T )+ k T k∞ .
In their papers[3,4], Cao, Zhang and Xu proved that (Lα (K, X), k . kα ) is
a Banach space over F and lα (K, X) is a closed linear subspace of (Lα (K, X),
k . kα ). Now, let (A, k . k) be a unital Banach algebra with unit e. In this paper, we show that (Lα (K, A), k . kα ) is a Banach algebra under pointwise and
scalar multiplication and lα (K, A) is a closed linear subalgebra of (Lα (K, A),
k . kα ) and study many aspects of these algebras. The spaces Lα (K, A) and
lα (K, A) are called big and little Lipschitz operators algebras. Note that Lipschitz operators algebras are, in fact, extensions of Lipschitz algebras. Sherbert
[12, 13], Weaver [14, 15], Honary and Mahyar [7], Johnson [9], Alimohammadi
and Ebadian[1], Ebadian[6], Bade, Curtis and Dales[2], studied some properties
of Lipschitz algebras. Finally, we will study (weak) amenability of Lipschitz
operators algebras.
2.Characterizations Of Lipschitz Operators Algebras
In this section, let (K, d) be a compact metric space which has at least two
elements and (A, k . k) to denote a unital Banach algebra over the scalar field

F(= R or C).
Theorem 2.1. Lα (K, A), k . kα ) is a Banach algebra over F and lα (K, A)
is a closed linear subspace of (Lα (K, A), k . kα ).
Proof. As we have already Lα (K, A) is a Banach space and lα (K, A) is a closed
linear subspace if it. Now let T , S ∈ Lα (K, A), and define
(T S)(t) = T (t)S(t) (t ∈ K).
88

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
Then
k T S kα = k T S k∞ +Lα (T S)
k T (t)S(t) − T (s)S(s) k
d(t, s)α
t6=s
≤ k T k∞ k S k∞ + k T k∞ Lα (S)+ k S k∞ Lα (T )
≤ (k T k∞ +Lα (T ))(k S k∞ +Lα (S))
= k T kα k S kα .

≤ k T k∞ k S k∞ + sup


So that we see that (Lα (K, A), k . kα ) is a Banach algebra and lα (K, A) is a
closed linear subspace of (Lα (K, A), k . kα ).

Theorem 2.2. Let (K, d) be a compact metric space. Then Lα (K, A) is
uniformly dense in C(K, A).
Proof. Let f ∈ C(K, A). Then for every σ ∈ A∗ we have σof ∈ C(K), so that
there is g ∈ Lα (K) such that k g − σof k∞ < ε. We define, the map η : C → A
by η(λ) = λ.e. It is easy to see that ηog ∈ Lα (K, A), and for every σ ∈ A∗ , we
have
| σ(g(x).e − f (x)) |=| g(x) − (σof )(x) |< ε , (x ∈ K).
Therefor | σ(ηog − f )(x) |< ε for every σ ∈ A∗ and x ∈ K. This implies that
k (ηog − f )(x) k< ε for every x ∈ K. Therefor, k ηog − f k∞ < ε and the proof
is complete.

Remark 2.3. Let A, B be unital Banach algebras over F. Then the injecˇ is a unital Banach algebra under norm k.kǫ [11].
tive tensor A⊗B
Theorem 2.4. Lα (K, A) = {F : K → A| σoF ∈ Lα (K, C), (∀σ ∈ A∗ )}
Proof. Use the principle of Uniform Boundedness.

For every Banach algebra B, let ΦB be the space of maximal ideal of B.

Theorem 2.5. ΦLα (K,A) and Φlα (K,A) are identified with K.
Proof. Similarly to the proof of Lipschitz algebras.

Theorem 2.6. Let (K, d) be a compact metric space and A be a unital
ˇ
Banach algebra. Then Lα (K, A) is isometrically isomorphic to Lα (K)⊗A.
α
Proof. It is straightforward to prove that the mapping V : L (K) × A →
89

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
Lα (K, A) defined by
V (f, a) = f a (f ∈ Lα (K),
(f a)(x) := f (x)a (x ∈ K),

a ∈ A),

ˇ →
is bilinear. Therefor there exists a unique linear map T : Lα (K)⊗A
α

L (K, A) such that T (f ⊗ a) = V (f, a), [11]. We have
k T (f ⊗ a) kα = k V (f, a) kα =k f a kα =k f a k∞ +Lα (f a)
= k f k∞ k a k +Lα (f ) k a k
= k f kα k a k=k f ⊗ a kε .
ˇ into Lα (K, A). Now, we show that
Therefor T is a linear isometry of Lα (K)⊗A
the range of T , RT is a closed and dense subset of Lα (K, A). It is easy to see
that RT is closed. Let f ∈ Lα (K, A) and γ > 0. There exist a1 , . . . , an ∈ A such
S
that X := f (K) ⊂ ni=1 B(ai , γ). Set Uj = f −1 (B(aj , γ)) where j = 1, · · · , n.
Then there exist f1 , . . . , fn ∈ Lα (K, A) and σ ∈ A∗ such that supp(fj ) ⊂ Uj for
j = 1, . . . , n and σo(f1 + . . . + fn ) = 1. For every x ∈ K we have,
k f (x) − ((σof1 )a1 + · · · + (σofn )an )(x) k









= k f (x) (σof1 )(x) + · · · + (σofn )(x) − (σof1 )(x)a1 + · · · + (σofn )(x)an k
= k (σof1 )(x)(f (x) − a1 ) + · · · + (σofn )(x)(f (x) − an ) k


n
X

| (σofi )(x) |k f (x) − ai k< γ,

i=1

since suppfj ⊂ Uj . Therefore,
k f − ((σof1 )a1 + · · · + (σofn )an ) kα < γ.
This implies that
kf−

n
X


T (σofi , ai ) kα < γ.

i=1

¯ T = Lα (K, α). Let τ and τ ′ be topologies on Lα (K)⊗A
ˇ and
We conclude that R
α

L (K, A) respectively. Let U ∈ τ , we show that T (U ) ∈ τ . Let p be a limit
point in Lα (K, A)\T (U ). Then there exists a sequence {pn } in Lα (K, A)\T (U )
ˇ such that
converges to p. Since T is onto, there is a sequence {qn } in Lα (K)⊗A
α
ˇ
T (qn ) = pn . Therefore T (qn ) converges to p in L (K). Since qn ∈ Lα (K)⊗A,
90

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
(n)


we can find m ∈ N, fj
we have

(n)

∈ Lα (K) and aj
T (qn ) =

m
X

∈ A such that whenever 1 ≤ j ≤ m

(n) (n)

fj aj .

(1)


j=1

ˇ there exist r ∈ N,
Also, since q ∈ Lα (K)⊗A
that
r
p = T (q) =

X

gi ∈ Lα (K) and bi ∈ A such

gi bi .

(2)

i=1

Since kT (qn ) − pkα → 0 as n → ∞ , for every positive number γ there exists
a positive integer N such that
k

m
X

(n) (n)

fj aj −

r
X

gi bi kα < γ,

(3)

i=1

j=1

when n ≥ N. By applying (3), we have
sup k
(x∈K)

m
X

(n)
(n)
fj (x)aj



r
X

gi (x)bi k

i=1

j=1

r
m
r
m
X
X
X
X
1
(n)
(n)
(n)
(n)
+ sup
gi (y)bi k
fj (y)aj +
gi (x)bi −
fj (x)aj −
k
α
(x6=y) d(x, y)
i=1
j=1
i=1
j=1
< γ.

Therefore if σ ∈ A∗ with kσk ≤ 1 then
sup k
(x∈K)

m
X

(n)
(n)
fj (x)σ(aj )



j=1

r
X

gi (x)σ(bi )k

i=1

m
r
m
X
X
X
1
(n)
(n)
(n)
(n)
+ sup
fj (y)σ(aj )
gi (x)σ(bi )
fj (x)σ(aj ) −
k
α
(x6=y) d(x, y)
j=1
i=1
j=1

+

r
X

gi (y)σ(bi )k

i=1

< γ.
This implies that
k

m
X

(n)

(n)

fj σ(aj ) −

r
X
i=1

j=1

91

gi σ(bi )kα < γ

(4)

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
Now by using (4), for every φ ∈ Lα (K)∗ with kφkα ≤ 1 we have,
|φ(

m
X

(n)

(n)

fj σ(aj ) −

|

m
X

gi σ(bi ))| < γ,

i=1

j=1

hence

r
X

(n)
(n)
φ(fj )σ(aj )



r
X

φ(gi )σ(bi )| < γ.

(5)

i=1

j=1

By (5), we conclude
sup |

m
X

j=1

(n)
(n)
φ(fj )σ(aj )



r
X

φ(gi )σ(bi )| < γ,

kσk ≤ 1, kφkα ≤ 1.

(6)

i=1

ˇ
Therefore kqn −qkǫ ≤ γ and hence qn → q or qn → T (−1) (p) in Lα (K)⊗A.
This
c
show that p ∈ T (U ) and the proof is complete.

Remark 2.7. By using the above theorem we can prove that lα (K, A) ∼
=
α
ˇ
l (K)⊗A.
3.(Weak) Amenability Of Lα (K, A)
Let A be a Banach algebra and X be a Banach A-module over F. The linear
map D : A → X is called an X-derivation on A, if D(ab) = D(a).b + a.D(b),
for every a, b ∈ A. The set of all continues X-derivations on A is a vector space over F which is denoted by Z 1 (A, X). For each x ∈ X the map
δx : A → X, defined by δx (a) = a.x − x.a, is a continues X-derivation on A.
The X-derivation D : A → X is called an inner derivation on A if there exists
an x ∈ X such that D = δx . The set of all inner X-derivations on A is a linear subspace of Z 1 (A, X) which is denoted by B 1 (A, X). The quotient space
Z 1 (A, X)/B 1 (A, X) is denoted by H 1 (A, X) and is called the first cohomology
group of A with coefficients in X.
Definition 3.1. The Banach algebra A over F is called amenable if for
every Banach A-module X over F, H 1 (A, X ∗ ) = {0}. The Banach algebra A
over F is called weakly amenable if H 1 (A, A∗ ) = {0}.

92

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
The notion of amenability of Banach algebras were first introduced by B. E.
Johnson in 1972 [8]. Bade, Curtis and Dales [2], studied the (weak) amenability of Lipschitz algebras in 1987 [2]. In this section, we study the (weak)
amenability of Lα (K, A).
Definition 3.2. Let A be a commutative Banach algebra and let φ ∈
ΦA ∪ {0}. The non-zero linear functional D on A is called point derivation at
φ if
D(ab) = φ(a)D(b) + φ(b)D(a), (a, b ∈ A).
Lemma 3.3. For each non-isolated point x ∈ K and σ ∈ A∗ , if the map
φ : Lα (K, A) → C is given by
φ(f ) = (σof )(x),

(f ∈ Lα (K, A))

then φ ∈ ΦLα (K,A) .
Proof.Obvious.



Let (K, d) be a fixed non-empty compact metric space, set
∆ = {(x, y) ∈ K × K : x = y},

W = K × K − ∆.

We now examine the amenability and weak amenability of Lipschitz operators
algebras Lα (K, A) and lα (K, A).
Theorem 3.4. Let (K, d) be an infinite compact metric space and take
α ∈ (0, 1]. Then Lα (K, A) is not weakly amenable.
Proof. Let x be a non-isolated point in K. We define
Wx := {{(xn , yn )}∞
n=1 : (xn , yn ) ∈ W,

(xn , yn ) → (x, x) as n → ∞}


For the net w = {(xn , yn )}∞
n=1 in Wx and σ ∈ A , we put

w(f ) =

(σof )(xn ) − (σof )(yn )
,
d(xn , yn )α

(f ∈ Lα (K, A))

then k w(f ) k∞ ≤k σ kk f kα . Hence, w is continues. Now set
Dw (f ) = LIM (w(f )) ,

93

(f ∈ Lα (K, A))),

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
where LIM (.) is Banach limit [12]. We show that the linear map Dw is a
non-zero point derivation at φ, which φ is given by Lemma 6. We have,
Dw (f g) = LIM (w(f g))
(σof g)(xn ) − (σof g)(yn )
= LIM
d(xn , yn )α
 

1
σo f (xn )g(xn ) − f (xn )g(yn )
= LIM
d(xn , yn )α
 
1
σo f (xn )(g(xn ) − g(yn ))
= LIM
d(xn , yn )α


+ g(yn )(f (xn ) − f (yn ))

= (σof )(x)LIM (w(g)) + (σog)(x)LIM (w(g))
= φ(f )Dw (g) + φ(g)Dw (f )
Therefor, by the continuity f , g and properties of Banach limit we conclude
Dw is a non-zero, continues point derivation at φ on Lα (K, A), an so by [5],
Lα (K, A) is not weakly amenable.

Corollary 3.5. Lα (K, A) is not amenable.
Definition 3.6. A subset E of an abelian group G is said to be independent
if E has the foolowing property: for every choice of distinct points x1 , . . . , xk
of E and integers n1 , . . . , nk , either
n1 x1 = n 2 x2 = · · · = nk xk = 0

(2)

n1 x1 + n2 x2 + · · · + nk xk 6= 0

(3)

or
In other words, no linear combination (3) can be zero unless every summands
is zero, [10].
Theorem 3.7. Let K ⊆ C be an infinite compact set, and take α ∈ (0, 1).
Then lα (K, A) is not amenable.
Proof. Let x0 ∈ K. We define
Mx0 := {f ∈ lα (K, A) :

(σof )(x0 ) = 0 ∀σ ∈ A∗ }
94

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
If σ ∈ A∗ , then for each f ∈ Mx20 we have
(σof )(x)
−→ 0 as d(x, x0 ) −→ 0.
d(x, x0 )2α
For β ∈ (α, 2α), set fβ (x) := η(d(x, x0 )β ), x ∈ K where, the map η : C → A
defined by η(λ) = λ.e. Then fβ ∈ Mx0 and {fβ + Mx20 : β ∈ (α, 2α)} is a
M
linearly independent set in Mx20 because x0 is non-isolated in K. Therefor Mx20
x0

has infinite codimension in Mx0 , and so Mx0 6= Mx20 then by [5] Mx0 has not a
bounded approximate identity, and since Mx0 is closed ideal in lα (K, A), then
lα (K, A) is not amenable.

Theorem 3.8. Let (K, d) be a compact metric space and A be a unital commutative Banach algebra. If 12 < α < 1, then lα (T, A) is not weakly
amenable, where T is unit circle in complex plane.
ˇ
Proof. By remark 7, we have lα (T, A) ∼
Since by [5] lα (T) is not
= lα (T)⊗A.
weakly amenable, hence lα (T, A) is not weakly amenable.

Corollary3.9. Let A be a finite-dimensional weakly amenable Banach algebra. If 0 < α < 12 , then lα (K, A) is weakly amenable.
ˆ is weakly amenable. Now by [11], we have lα (K)⊗A
ˆ ∼
Proof. By [11], lα (K)⊗A
=
α
α
α
ˇ and this implies that l (K)⊗A
ˇ is weakly amenable and so l (K, A)
l (K)⊗A
is weakly amenable.

References
[1] Alimohammadi, D. and Ebadian, A. Headberg’s theorem in real Lipschitz
algebras, Indian J. Pure Appl. Math, 32, (2001), 1479-1493.
[2] Bade, W. G., Curtis, P. C. and Dales, H. G., Amenability and weak
amenability for Berurling and Lipschitz algebras, Proc. London. Math. Soc.
(3), 55 (1987), 359-377, .
[3] Cao, H. X. and Xu, Z. B., Some properties of Lipschitz-α operators,
Acta Mathematica Sinica, English Series, 45 (2), (2002), 279-286 .
[4] Cao, H. X., Zhang, J. H. and Xu, Z. B., Characterizations and extentions of Lipschitz-α operators, Acta Mathematica Sinica, English Series, 22
(3), (2006), 671-678 .
95

A.A. Shokri, A. Ebadian, A.R. Medghalchi - Amenability and Weak...
[5] Dales, H. G., Banach algebras and Automatic Continuty, Clarendon
press. oxford, 2000.
[6] Ebadian, A., Prime ideals in Lipschitz algebras of finite differentable
function, Honam Math. J., 22 (2000), 21-30, .
[7] Honary, T. G, Mahyar, H., Approximation in Lipschitz algebras, Quest.
Math. 23, (2000), 13-19 .
[8] Johnson, B. E., Cohomology in Banach algebras, Men. Amer. Soc, 127
(1972).
[9] Johnson, B. E., Lipschitz spaces, Pacfic J. Math, 51, (1975), 177-186.
[10] Rudin, W. Fourier analysis on groups, Wiley, 1990.
[11] Runde, Volker, Lectures on amenability, Springer, 2001.
[12] Sherbert, D. R., Banach algebras of Lipschitz functions, Pacfic J. Math,
13, (1963), 1387-1399.
[13] Sherbert, D. R., The structure of ideals and point derivations in Banach
algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111, (1964), 240272.
[14] Weaver, N., Subalgebras of little Lipschitz algebras, Pacfic J. Math.,
173, (1996), 283-293.
[15] Weaver, N., Lipschitz algebras, World Scientific Publishing Co., Inc.,
River Edge, NJ, 1999.
Authors:
A.A. Shokri
Faculty Of Basic Science, Science And Research Brunch,
Islamic Azad University (IAU), Tehran, Iran.
email:[email protected]
A. Ebadian
Department of mathematics, Faculty of science,
Urmia University, Urmia, Iran.
email:[email protected]
A.R. Medghalchi
Department of Mathematics,Tarbiat Moallem
University, 599 Talegani Avenue, Tehran, Iran.
email:[email protected]

96

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52