paper 23-18-2009. 159KB Jun 04 2011 12:03:08 AM

ACTA UNIVERSITATIS APULENSIS

No 18/2009

CERTAIN SUBCLASS OF HARMONIC PRESTARLIKE
FUNCTIONS IN THE PARABOLIC REGION
K.Vijaya
Abstract. A comprehensive class of complex-valued harmonic prestarlike
univalent functions is introduced . Necessary and sufficient coefficient bounds
are given for functions in this function class. Further distortion bounds and
extreme points are also obtained.
Keywords and Phrases : harmonic, univalent, prestarlike, starlike.
2000 Mathematics Subject Classification: 30C45; 30C50.
1. Introduction
A continuous functions f = u + iv is a complex- valued harmonic function
in a complex domain G if both u and v are real and harmonic in G. In any
simply connected domain D ⊂ G we can write f = h + g where h and g are
analytic in D. We call h the analytic part and g the co-analytic part of f. A
necessary and sufficient condition for f to be locally univalent and orientation
preserving in D is that |h′ (z)| > |g ′ (z)| in D (see [3]).Denote by H the family
of functions

f =h+g
(1)
that are harmonic univalent and orientation preserving in the open unit disc
U = {z : |z| < 1} for which f (0) = h(0) = 0 = fz (0)−1. Thus for f = h+g ∈ H
we may express the analytic functions for h and g as
f (z) = z +


X

m

am z +


X

bm z m , (|b1 | < 1),

m=1


m=2

where the analytic functions h and g are in the forms
h(z) = z +


X

m

am z , g(z) = b1 z +


X

m=2

m=2


245

bm z m (0 ≤ b1 < 1).

(2)

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...
Note that the family H of orientation preserving,normalized harmonic univalent functions reduces to S the class of normalized analytic univalent functions if the co-analytic part of f = h + g is identically zero that is g ≡ 0. Given


P
P
two functions φ(z) =
φm z m and ψ(z) =
ψm z m in S there Hadamard
m=1

m=1

product or convolution (φ ∗ ψ)(z) is defined by (φ ∗ ψ)(z) = φ(z) ∗ ψ(z) =


P

m=1

φm ψm z m . Using the convolution ,Ruscheweyh [9] introduced and studied

the class of prestarlike function of order α
Sα (z) =

z
,
(1 − z)2(1−α)

(z ∈ ∆, 0 ≤ α < 1)

(3)

We also note that Sα (z) can be written in the form
Sα (z) = z +



X

|Cm (α)|z m ,

(4)

m=2

where
Cm (α) =

Qm

j=2 (j

− 2α)
(m ∈ N \ {1}, N := {1, 2, 3, · · ·}).
(m − 1)!


(5)

We note that Cm (α) is decreasing in α and satisfies

lim Cm (α) =

m→∞










1







 0

if α <

1
2

if α =

1
2

if α >

1

2

.

(6)

For f = h+g given by (1) and 0 ≤ α < 1 we define the prestarlike harmonic
function f = h + g in H by
Sα (z) ∗ f (z) = Sα (z) ∗ h(z) + Sα (z) ∗ g(z)

(7)

where Sα is given by (4) and the operator ∗ stands for the hadamard product
or convolution product.
For 0 ≤ γ < 1, let PG H (α, γ) denote the subfamily of starlike harmonic
functions f ∈ H of the form (1) such that
Re




(1 + eiψ )

z(Sα (z) ∗ f (z))′
− eiψ
z ′ (Sα (z) ∗ f (z))

246



≥ γ,

(8)

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...


where (Sα (z) ∗ f (z))′ = ∂θ
(Sα (reiθ ) ∗ f (reiθ )), z ′ = ∂θ
(z = reiθ ) and Sα (z) is

defined by (4).
T
We also let PV H (α, γ) = PG H (α, γ) VH where VH the class of harmonic
functions with varying arguments introduced by Jahangiri and Silverman [4],
consisting of functions f of the form(2) in H for which there exists a real
number φ such that

ηm + (m − 1)φ ≡ π (mod 2 π), δm + (m − 1)φ ≡ 0, m ≥ 2,

(9)

where ηm = arg(am ) and δm = arg(bm ).
In this paper we obtain a sufficient coefficient condition for functions f
given by (2) to be in the class PG H (α, γ). It is shown that this coefficient
condition is necessary also for functions belonging to the class VG H (α, γ).
Further, distortion results and extreme points for functions in VG H (α, γ) are
also obtained.
2.The class PG H (α, γ).
We begin deriving a sufficient coefficient condition for the functions belonging
to the class PG H (α, γ). This result is contained in the following.

Theorem 1. Let f = h + g be given by (2). If

X

!

2m + 1 + γ
3+γ
2m − 1 − γ
|am | +
|bm | Cm (α) ≤ 1 −
b1
1−γ
1−γ
3−γ

m=2

(10)

0 ≤ γ < 1, then f ∈ PG H (α, γ).
Proof. We first show that if the inequality (10) holds for the coefficients
of f = h + g, then the required condition (8) is satisfied. Using (7) and (8),
we can write
Re

(Sα (z) ∗ h(z))′ − (Sα (z) ∗ g(z))′
(1 + e )
− eiψ
(Sα (z) ∗ h(z)) + (Sα (z) ∗ g(z))

(



"

#

)

= Re

A(z)
,
B(z)

where
h

i

A(z) = (1+eiψ )[Sα (z)∗h(z))′ −z(Sα (z) ∗ g(z))′ ]−eiψ (Sα (z) ∗ h(z)) + (Sα (z) ∗ g(z))
and

B(z) = (Sα (z) ∗ h(z)) + (Sα (z) ∗ g(z)).
247

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...
In view of the simple assertion that Re (w) ≥ γ if and only if |1 − γ + w| ≥
|1 + γ − w|, it is sufficient to show that
|A(z) + (1 − γ)B(z)| − |A(z) − (1 + γ)B(z)| ≥ 0.

(11)

Substituting for A(z) and B(z) the appropriate expressions in (11), we get
|A(z) + (1 − γ)B(z)| − |A(z) − (1 + γ)B(z)|

X

≥ (2 − γ)|z| −

(2m − γ)Cm (α)|am | |z|m −

m=2

−γ|z| −


X

(2m − 2 − γ)Cm (α)|am | |z|m −


X

m=1

X

(2m + γ)Cm (α)|bm | | |z|m
(2m + 2 + γ)Cm (α)|bm | |z|m .

m=1

m=2

(

3+γ
≥ 2(1 − γ)|z| 1 −
b1 −
1−γ


X

m=2

"

2m − 1 − γ
Cm (α)|am |
1−γ
#!)

2m + 1 + γ
+
Cm (α)|bm |
1−γ

≥ 0
by virtue of the inequality (10). This implies that f ∈ PG H (α, γ).
Now we obtain the necessary and sufficient condition for function f = h + g
be given with condition (9).
Theorem 2. Let f = h + g be given by (2). Then f ∈ VG H (α, γ) if and
only if

X

m=2

(

)

2m − 1 − γ
2m + 1 + γ
3+γ
|am | +
|bm | Cm (α) ≤ 1 −
b1
1−γ
1−γ
1−γ

(12)

0 ≤ γ < 1.
Proof.
Since VG H (α, γ) ⊂ PG H (α, γ), we only need to prove the necessary part of the theorem. Assume that f ∈ VG H (α, γ), then by virtue of (4)
to (8), we obtain
Re

z(Sα (z) ∗ h(z))′ − z(Sα (z) ∗ g(z))′
− (eiψ + γ) ≥ 0.
(1 + e )
(Sα (z) ∗ h(z)) + (Sα (z) ∗ g(z))

(



"

#

248

)

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...
The above inequality is equivalent to

Re

 ∞

P


[m(1 + eiψ ) − γ − eiψ ]Cm (α)|am |z m
z +
m=2



P
P


 z+
Cm (α)|am |z m +
Cm (α)|bm |z m
m=1

m=2


P

m=1






[m(1 + e ) + γ + e ]Cm (α)|bm |z




P

z+

m=2

= Re

m


P

Cm (α)|am |z m +

m=1


Cm (α)|bm |z m 





P


m−1 



(1

γ)
+
C
(α)[m(1
+
e
)

γ

e
]|a
|z
m
m


m=2





+Re



1+







P

m=2

− zz

z
z

Cm (α)|am |z m−1 +


P

m=1


P

m=1

Cm (α)|bm |z m−1

[m(1 + eiψ ) + γ + eiψ ]|bm |z m−1


P


1 +
Cm (α)|am |z m−1 +
m=2

z
z


P

m=1










≥ 0.


Cm (α)|bm |z m−1 


This condition must hold for all values of z, such that |z| = r < 1. Upon
choosing φ according to (9) and noting that Re(−eiψ ) ≥ −|eiψ | = −1, the
above inequality reduces to
(b1 − γ) −




P

m=2

(2m − 1 − γ)Cm (α)|am |r

1−


P

m=2

m−1

Cm (α)|am |rm−1 +


P

+ (2m + 1 + γ)Cm (α)|bm |r

m=1

m−1



≥ 0.

Cm (α)|bm |rm−1

(13)
If (12) does not hold, then the numerator in (13) is negative for r sufficiently
close to 1. Therefore, there exists a point z0 = r0 in (0,1) for which the quotient
in (13) is negative. This contradicts our assumption that f ∈ VG H (α, γ). We
thus conclude that it is both necessary and sufficient that the coefficient bound
inequality (12) holds true when f ∈ VG H (α, γ). This completes the proof of
Theorem 2.
If we put φ = 2π/k in (9), then Theorem 2, gives the following corollary.
249

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...
Corollary 3. A necessary and sufficient condition for f = h + g satisfying
(12) to be starlike is that
arg(am ) = π − 2(m − 1)π/k,
and
arg(bm ) = 2π − 2(m − 1)π/k

, (k = 1, 2, 3, . . .).

3.Distortion and Extreme Points
In this section we obtain the distortion bounds for the functions f ∈
VG H (α, γ) that lead to a covering result for the family VG H (α, γ).
Theorem 4. If f ∈ VG H (α, γ) then

and

!

1
|f (z)| ≤ (1 + |b1 |)r +
C2 (α1 )

1−γ 3+γ

|b1 | r2
3−γ 3−γ

1
|f (z)| ≥ (1 − |b1 |)r −
C2 (α)

1−γ 3+γ

|b1 | r2 .
3−γ 3−γ

!

Proof. We will only prove the right- hand inequality of the above theorem. The arguments for the left- hand inequality are similar and so we omit
it. Let f ∈ VG H (α, γ) taking the absolute value of f, we obtain
|f (z)| ≤ (1 + |b1 |)r +
≤ (1 + b1 )r + r


X

(|am | + |bm |)rm

m=2

X
2

(|am | + |bm |).

m=2

This implies that
1
|f (z)| ≤ (1 + |b1 |)r +
C2 (α)
1
≤ (1 + |b1 |)r +
C2 (α)
1
≤ (1 + |b1 |)r +
C2 (α)

1−γ
3−γ

!


X

m=2

!"

"

!

!

#

3+γ
1−γ
1−
|b1 | r2
3−γ
1−γ
!
1−γ 3+γ

|b1 | r2 ,
3−γ 3−γ
250

#

3−γ
3−γ
C2 (α)|am | +
C2 (α)|bm | r2
1−γ
1−γ

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...
which establishes the desired inequality.
As a consequence of the above theorem and Corollary 3, we state the following covering lemma.
Corollary 5. Let f = h + g and of the form (2) be so that f ∈ VG H (α, γ).
Then
)
(
3Cm (α) − 1 − [Cm (α) − 1]γ
(1 − b1 ) ⊂ f (U).
w : |w| <
(3 − γ)Cm (α)
For a compact family, the maximum or minimum of the real part of any
continuous linear functional occurs at one of the extreme points of the closed
convex hull. Unlike many other classes, characterized by necessary and sufficient coefficient conditions, the family VG H (α, γ) is not a convex family. Nevertheless , we may still apply the coefficient characterization of the VG H (α, γ)
to determine the extreme points.
Theorem 6. The closed convex hull of VG H (α, γ) (denoted by clcoVG H (α, γ)
is
(

f (z) = z +


X

|am |z m +

m=2


X

|bm |z m , :


X

m[|am | + |bm |] < 1 − b1

m=2

m=1

(1−γ)
By setting λm = (2m−1−γ)C
and µm =
m (α)
extreme points for clco VG H (α, γ) are

(1+γ)
,
(2m+1+γ)Cm (α)

n

)

then for b1 fixed, the

z + λm xz m + b1 z} ∪ {z + b1 z + µm xz m

o

(14)

where m ≥ 2 and |x| = 1 − |b1 |.
Proof.

Any function f in clcoVG H (α, γ) be expressed as
f (z) = z +


X

|am |eiηm z m + b1 z +

m=2


X

|bm |eiδm z m ,

m=2

where the coefficients satisfy the inequality (10). Set
h1 (z) = z, g1 (z) = b1 z, hm (z) = z + λm eiηm z m , gm (z) = b1 z + µm eiδm z m
for m = 2, 3, . . ..
251

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...

Writing Xm =
1−


P

m=2

|am |
,
λm

Ym =

|bm |
,
µm

m = 2, 3, . . . and X1 = 1 −

Ym , we get
f (z) =


X


P

m=2

Xm ; Y1 =

(Xm hm (z) + Ym gm (z)).

m=1

In particular, putting
f1 (z) = z+b1 z and fm (z) = z+λm xz m +b1 z+µm yz m , (m ≥ 2, |x|+|y| = 1−|b1 |)
we see that extreme points of clcoVG H (α, γ) ⊂ {fm (z)}.
To see that f1 (z) is not an extreme point, note that f1 (z) may be written as
1
1
f1 (z) = {f1 (z) + λ2 (1 − |b1 |)z 2 } + {f1 (z) − λ2 (1 − |b1 |)z 2 },
2
2
a convex linear combination of functions in clco VG H (α, γ).
To see that fm is not an extreme point if both |x| =
6 0 and |y| =
6 0, we
will show that it can then also be expressed as a convex linear combinations
of functions in clco VG H (α, γ). Without loss of generality, assume |x| ≥ |y|.
Choose ǫ > 0 small enough so that ǫ < |x|
. Set A = 1 + ǫ and B = 1 − | ǫx
|.
|y|
y
We then see that both
t1 (z) = z + λm Axz m + b1 z + µm yBz m
and
t2 (z) = z + λm (2 − A)xz m + b1 z + µm y(2 − B)z m
are in clco VG H (α, γ), and that fm (z) = 21 {t1 (z) + t2 (z)}.
The extremal coefficient bounds show that functions of the form (14) are
the extreme points for clco VG H (α, γ), and so the proof is complete.
4.Inclusion Relation
Following Avici and Zlotkiewicz [1] (see also Ruscheweyh [8]), we refer to
the the δ− neighborhood of the function f (z) defined by (2) to be the set of
functions F for which
Nδ (f ) =

(

F (z) = z +


X

m=2

Am z m +


X

Bm z m ,

m=1

252


X

m=2

m(|am − Am | + |bm − Bm |)

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...

+|b1 − B1 | ≤ δ} .

(15)

In our case, let us define the generalized δ−neighborhood of f to be

Nδ (f ) =

(

F :


X

Cm (α)[(2m − 1 − γ)(|am − Am | + (2m + 1 + γ)|bm − Bm |]

m=2

+(1 − γ)|b1 − B1 | ≤ (1 − γ)δ} .

(16)

Theorem 7. Let f be given by (2). If f satisfies the conditions

X


X

m(2m − 1 − γ)|am |Cm (α) +

m=2

m(2m + 1 + γ)|bm |Cm (α) ≤ (1 − γ),

(17)

m=1

and

1−γ
δ=
3−γ



3+γ
|b1 | , 0 ≤ γ < 1
1−
1−γ


(18)

then N (f ) ⊂ PG H (α, γ).
Proof. Let f satisfy (17) and F(z) be given by F (z) = z+B1 z+
which belongs to N (f ). We obtain
(3 + γ)|B1 | +


X

∞ 
P

Am z m + Bm z m

m=2



((2m − 1 − γ)|Am | + (2m + 1 + γ)|Bm |) Cm (α)

m=2

≤ (3 + γ)|B1 − b1 | + (3 + γ)|b1 | +


X

Cm (α) [(2m − 1 − γ)|Am − am |

m=2

+(2m + 1 + γ)|Bm − bm |] +


X

Cm (α) [(2m − 1 − γ)|am | + (2m + 1 + γ)|bm |]

m=2

≤ (1 − γ)δ + (3 + γ)|b1 | +


1 X
mCm (α) ((2m − 1 − γ)|am | + (2m + 1 + γ)|bm |)
3 − γ m=2

≤ (1 − γ)δ + (3 + γ)|b1 | +

1
[(1 − γ) − (3 + γ)|b1 |] ≤ 1 − γ.
3−γ

253

K.Vijaya - Certain Subclass Of Harmonic Prestarlike Functions in...




3+γ
Hence for δ = 1−γ
3−γ 1 − 1−γ |b1 | , we infer that F (z) ∈ PG H (α, γ) which concludes
the proof of Theorem 5.

Concluding Remarks: The various results presented in this paper would provide interesting extensions and generalizations of those considered earlier for simpler
harmonic function classes(see [4,5,6] and [10]. The details involved in the derivations of such specializations of the results presented in this paper are fairly straightforward hence omitted.

References
[1] Y.Avici and E.Zlotkiewicz, On harmonic univalent mappings Ann.Univ.Marie
Curie-Sklodowska Sect.,A44 (1990), 1 - 7.
[2] B.C.Carlson and S.B.Shaffer, Starlike and prestarlike hypergrometric functions, SIAM J.Math. Anal., 15 (2002), 737 - 745.
[3] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad.
Aci. Fenn. Ser. A.I. Math., 9 (1984) 3-25.
[4] J.M. Jahangiri and H. Silverman, Harmonic univalent functions with varying
rrguments, Internat. J. Appl. Math., 8(2002), 267-275.
[5] G.Murugusundaramoorthy, A class of Ruscheweyh-Type harmonic univalent
functions with varying arguments., Southwest J. Pure Appl. Math., 2 (2003), 90-95.
[6] T.Rosy, B.A.Stephen, K.G.Subramanian and J.M.Jahangiri, Goodman-Ronning
type harmonic univalent functions, Kyungpook Math. J., 41 (2001), 45-54.
[7] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49 (1975), 109 -115.
[8] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math.
Soc., 81 (1981), 521 -528.
[9] S. Ruscheweyh, Linear operator between classes of prestarlike Functions,
Comm. Math. Helv., 52 (1977), 497 -509.
[10] K.Vijaya, Studies on certain subclasses of harmonic functions, inter.Review
of pure and Appl. Math. , 1 (2005), 59 -67.
Author:
K.Vijaya
Department of Mathematics
VIT University
Vellore - 632014,Tamil Nadu, India.
e-mail: [email protected]

254

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52