paper 07-18-2009. 104KB Jun 04 2011 12:03:06 AM

ACTA UNIVERSITATIS APULENSIS

No 18/2009

UNIVALENCE CONDITION FOR A NEW GENERALIZATION
OF THE FAMILY OF INTEGRAL OPERATORS
Serap Bulut
Abstract. In [3], Breaz et al. gave an univalence condition of the integral
operator Gn,α introduced in [2]. The purpose of this paper is to generalize
the definition of Gn,α by means of the Al-Oboudi differential operator and
investigate univalence condition of this generalized integral operator. Our
results generalize the results of [3].
2000 Mathematics Subject Classification: 30C45.
Keywords and phrases: Analytic functions, Univalent functions, Integral
operator, Differential operator, Schwarz lemma.
1.Introduction
Let A denote the class of all functions of the form

X
f (z) = z +
ak z k


(1)

k=2

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}, and
S = {f ∈ A : f is univalent in U} .
For f ∈ A, Al-Oboudi [1] introduced the following operator:
D0 f (z) = f (z),

(2)

D1 f (z) = (1 − δ)f (z) + δzf ′ (z) = Dδ f (z),
n

D f (z) = Dδ (D

n−1

f (z)),


δ≥0

(3)

(n ∈ N := {1, 2, 3, . . .}).

(4)

If f is given by (1), then from (3) and (4) we see that
n

D f (z) = z +


X

[1 + (k − 1)δ]n ak z k ,

k=2


71

(n ∈ N0 := N ∪ {0}),

(5)

S. Bulut - Univalence condition for a new generalization of the family ...
with Dn f (0) = 0.
Remark 1. When δ = 1, we get S˘al˘agean’s differential operator [8].
The following results will be required in our investigation.
Schwarz Lemma [4]. Let the analytic function f be regular in the open
unit disk U and let f (0) = 0. If
|f (z)| ≤ 1

(z ∈ U) ,

|f (z)| ≤ |z|

(z ∈ U),


then
where the equality holds true only if
f (z) = Kz

(z ∈ U)

and

|K| = 1.

Theorem A [6]. Let
α ∈ C ( Re α > 0)
and
c ∈ C ( |c| ≤ 1; c 6= −1).
Suppose also that the function f (z) given by (1) is analytic in U. If



 ′′

c |z|2α + 1 − |z|2α zf (z) ≤ 1 (z ∈ U),

αf ′ (z)

then the function Fα (z) defined by
 Z
Fα (z) := α

 α1
f (t)dt
= z + ···

z

α−1 ′

t

0


(6)

is analytic and univalent in U.
Theoem B [5]. Let f ∈ A satisfy the following inequality:

2 ′

z f (z)


[f (z)]2 − 1 ≤ 1 (z ∈ U).
72

(7)

S. Bulut - Univalence condition for a new generalization of the family ...
Then f is univalent in U.
Theorem C [7]. Let the function g ∈ A satisfies the inequality (7). Also
let




3
α∈R
α ∈ 1,
and c ∈ C.
2

If

|c| ≤

3 − 2α
α

(c 6= −1)

and
|g(z)| ≤ 1 (z ∈ U),
then the function Gα (z) defined by

 Z
Gα (z) := α

z

α−1

(g(t))

0

 α1
dt

(8)

is in the univalent function class S.
In [2], Breaz and Breaz considered the integral operator
Gn,α (z) :=




[n (α − 1) + 1]

Z

z

α−1

(g1 (t))

α−1

· · · (gn (t))

0

1
 n(α−1)+1

dt
(g1 , . . . , gn ∈ A)

(9)

and proved that the function Gn,α (z) is univalent in U.
Remark 2. We note that for n = 1, we obtain the integral operator in
(8).
In [3], Breaz et al. proved the following theorem.
Theorem D [3]. Let M ≥ 1 and suppose that each of the functions gj ∈
A (j ∈ {1, . . . , n}) satisfies the inequality (7). Also let



(2M + 1)n
and c ∈ C.
α∈R
α ∈ 1,
(2M + 1)n − 1
If

|c| ≤ 1 +



1−α
α
73



(2M + 1)n

S. Bulut - Univalence condition for a new generalization of the family ...
and
|gj (z)| ≤ M

(z ∈ U; j ∈ {1, . . . , n}),

then the function Gn,α (z) defined by (9) is in the univalent function class S.
Now we introduce a new general integral operator by means of the AlOboudi differential operator.
Definition 1. Let n ∈ N, m ∈ N0 and α ∈ C. We define the integral
operator Gn,m,α : An → A by
Gn,m,α (z) :=

(

[n (α − 1) + 1]

Z

0

where g1 , . . . , gn ∈ A and D

m

n
zY

α−1

(Dm gj (t))

j=1

1
) n(α−1)+1

dt

(z ∈ U),
(10)

is the Al-Oboudi differential operator.

Remark 3. In the special case n = 1, we obtain the integral operator
 Z
Gm,α (z) := α

z
m

α−1

(D g(t))

0

 α1
dt

(z ∈ U).

(11)

Remark 4. If we set m = 0 in (10) and (11), then we obtain the integral
operators defined in (9) and (8), respectively.
2.Main results
Theorem 1. Let M ≥ 1 and suppose that each of the functions gj ∈
A (j ∈ {1, . . . , n}) satisfies the inequality



z 2 (Dm g (z))′


j
(12)
− 1 ≤ 1 (z ∈ U; m ∈ N0 ).

2
m

(D gj (z))
Also let

α∈R
If




α ∈ 1,

|c| ≤ 1 +



(2M + 1)n
(2M + 1)n − 1
1−α
n(α − 1) + 1
74





and

(2M + 1)n

c ∈ C.

S. Bulut - Univalence condition for a new generalization of the family ...
and
|Dm gj (z)| ≤ M

(z ∈ U; j ∈ {1, . . . , n}),

then the integral operator Gn,m,α (z) defined by (10) is in the univalent function
class S.
Proof. Since gj ∈ A (j ∈ {1, . . . , n}), by (5), we have

X
Dm gj (z)
=1+
[1 + (k − 1)δ]m ak,j z k−1
z
k=2

and

(m ∈ N0 )

Dm gj (z)
6= 0
z

for all z ∈ U.
Also we note that
(
Gn,m,α (z) =

[n(α − 1) + 1]

Z

z

tn(α−1)

0

Define a function
f (z) =

Z

0

Then we obtain


f (z) =

α−1
n  m
Y
D gj (t)
t

j=1

n 
zY
j=1

Dm gj (t)
t

α−1

α−1
n  m
Y
D gj (z)
z

j=1

ln f (z) = (α − 1)

n
X
j=1

ln

.

Dm gj (z)
z

or equivalently
ln f ′ (z) = (α − 1)

n
X
j=1

75

dt

.

dt.

It is clear that f (0) = f ′ (0) − 1 = 0.
The equality (13) implies that


1
) n(α−1)+1

(ln Dm gj (z) − ln z) .

(13)

S. Bulut - Univalence condition for a new generalization of the family ...
By differentiating above equality, we get

n 
X
(Dm gj (z))′ 1
f ′′ (z)
.
= (α − 1)

f ′ (z)
Dm gj (z)
z
j=1
Hence we obtain

n 
X
z (Dm gj (z))′
zf ′′ (z)
= (α − 1)
−1 ,
f ′ (z)
Dm gj (z)
j=1
which readily shows that






zf ′′ (z)
c |z|2[n(α−1)+1] + 1 − |z|2[n(α−1)+1]



[n(α − 1) + 1] f (z)


X
n 




m
z
(D
g
(z))
α

1


j
−1
= c |z|2[n(α−1)+1] + 1 − |z|2[n(α−1)+1]


n(α − 1) + 1 j=1
Dm gj (z)



X

n  2
z (Dm gj (z))′ Dm gj (z)
α−1
+1 .


≤ |c| +

n(α − 1) + 1 j=1 (Dm gj (z))2
z
From the hypothesis, we have |gj (z)| ≤ M (j ∈ {1, . . . , n} ; z ∈ U), then by
the Schwarz lemma, we obtain that
|gj (z)| ≤ M |z|

(j ∈ {1, . . . , n} ; z ∈ U).

Then we find




′′


zf
(z)
2[n(α−1)+1]
2[n(α−1)+1]
c |z|

+
1

|z|

[n(α − 1) + 1] f ′ (z)

X


n  2
z (Dm gj (z))′
α−1

M + 1
≤ |c| +
n(α − 1) + 1 j=1 (Dm gj (z))2


X

n  2

z (Dm gj (z))′
α−1

− 1 M + M + 1
≤ |c| +
n(α − 1) + 1 i=1 (Dm gj (z))2


α−1
≤ |c| +
(2M + 1)n ≤ 1
n(α − 1) + 1


1−α
since |c| ≤ 1 + n(α−1)+1
(2M + 1)n. Applying Theorem A, we obtain that
Gn,m,α is in the univalent function class S.
76

S. Bulut - Univalence condition for a new generalization of the family ...
Remark 5. If we set m = 0 in Theorem ??, then we have Theorem D.
Corollary 2. Let each of the functions gj ∈ A (j ∈ {1, . . . , n}) satisfies
the inequality (12). Suppose also that



3n
α∈R
α ∈ 1,
and c ∈ C.
3n − 1
If
|c| ≤ 1 + 3
and



1−α
n(α − 1) + 1



n

|Dm gj (z)| ≤ 1 (z ∈ U; j ∈ {1, . . . , n}),
then the integral operator Gn,m,α (z) defined by (10) is in the univalent function
class S.
Proof. In Theorem 1, we consider M = 1.
Remark 6. If we set m = 0 in Corollary 2, then we have Corollary 1 in
[3].
Corollary 3. Let M ≥ 1 and suppose that the functions g ∈ A satisfies
the inequality (12). Also let



2M + 1
and c ∈ C.
α∈R
α ∈ 1,
2M
If
|c| ≤ 1 +
and



1−α
α

|Dm g(z)| ≤ M



(2M + 1)

(z ∈ U),

then the integral operator Gm,α (z) defined by (11) is in the univalent function
class S.
Proof. In Theorem 1, we consider n = 1.
Remark 7. If we set m = 0 in Corollary 3, then we have Corollary 2 in
[3].
77

S. Bulut - Univalence condition for a new generalization of the family ...
Remark 8. If we set M = n = 1 and m = 0 in Theorem 1, then we obtain
Theorem C.
References
[1] F. M. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean
operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
[2] D. Breaz and N. Breaz, Univalence of an integral operator, Mathematica
(Cluj) 47 (2005), no. 70, 35-38.
[3] D. Breaz, N. Breaz and H. M. Srivastava, An extension of the univalent
condition for a family of integral operators, Appl. Math. Lett. 22 (2009), no.
1, 41-44.
[4] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.
[5] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent
functions, Proc. Amer. Math. Soc. 33 (1972), 392-394.
[6] V. Pescar, A new generalization of Ahlfors’s and Becker’s criterion of
univalence, Bull. Malaysian Math. Soc. (Ser. 2) 19 (1996), 53-54.
[7] V. Pescar, On the univalence of some integral operators, J. Indian Acad.
Math. 27 (2005), 239-243.
[8] G. S¸. S˘al˘agean, Subclasses of univalent functions, Complex AnalysisFifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in
Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372.
Author:
Serap Bulut
Civil Aviation College
Kocaeli University
Arslanbey Campus
˙
41285 Izmit-Kocaeli
Turkey
e-mail:[email protected]

78

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

82725 maths specimen paper 1 2014 2017

0 6 16

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52