Other Object-Oriented Concepts
11.1.6 Other Object-Oriented Concepts
Polymorphism of Operations (Operator Overloading). Another characteris- tic of OO systems in general is that they provide for polymorphism of operations, which is also known as operator overloading. This concept allows the same
operator name or symbol to be bound to two or more different implementations of the operator, depending on the type of objects to which the operator is applied. A simple example from programming languages can illustrate this concept. In some languages, the operator symbol “+” can mean different things when applied to operands (objects) of different types. If the operands of “+” are of type integer, the
operation invoked is integer addition. If the operands of “+” are of type floating point, the operation invoked is floating point addition. If the operands of “+” are of type set, the operation invoked is set union. The compiler can determine which
operation to execute based on the types of operands supplied. In OO databases, a similar situation may occur. We can use the
GEOMETRY_OBJECT example presented in Section 11.1.5 to illustrate operation polymorphism 19 in ODB.
In this example, the function Area is declared for all objects of type GEOMETRY_OBJECT . However, the implementation of the method for Area may
differ for each subtype of GEOMETRY_OBJECT . One possibility is to have a general implementation for calculating the area of a generalized GEOMETRY_OBJECT (for
19 In programming languages, there are several kinds of polymorphism. The interested reader is referred
368 Chapter 11 Object and Object-Relational Databases
example, by writing a general algorithm to calculate the area of a polygon) and then to rewrite more efficient algorithms to calculate the areas of specific types of geo- metric objects, such as a circle, a rectangle, a triangle, and so on. In this case, the Area function is overloaded by different implementations.
The ODMS must now select the appropriate method for the Area function based on the type of geometric object to which it is applied. In strongly typed systems, this can be done at compile time, since the object types must be known. This is termed early (or static) binding. However, in systems with weak typing or no typing (such as Smalltalk and LISP), the type of the object to which a function is applied may not
be known until runtime. In this case, the function must check the type of object at runtime and then invoke the appropriate method. This is often referred to as late (or dynamic) binding.
Multiple Inheritance and Selective Inheritance. Multiple inheritance occurs when a certain subtype T is a subtype of two (or more) types and hence inherits the functions (attributes and methods) of both supertypes. For example, we may create a subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and ENGINEER . This leads to the creation of a type lattice rather than a type hierarchy. One problem that can occur with multiple inheritance is that the supertypes from which the subtype inherits may have distinct functions of the same name, creating an ambiguity. For example, both MANAGER and ENGINEER may have a function called Salary . If the Salary function is implemented by different methods in the MANAGER and ENGINEER supertypes, an ambiguity exists as to which of the two is inherited by the subtype ENGINEERING_MANAGER . It is possible, however, that both ENGINEER and MANAGER inherit Salary from the same supertype (such as EMPLOYEE ) higher up in the lattice. The general rule is that if a function is inherited from some common supertype, then it is inherited only once. In such a case, there is no ambiguity; the problem only arises if the functions are distinct in the two supertypes.
There are several techniques for dealing with ambiguity in multiple inheritance. One solution is to have the system check for ambiguity when the subtype is created, and to let the user explicitly choose which function is to be inherited at this time. A second solution is to use some system default. A third solution is to disallow multi- ple inheritance altogether if name ambiguity occurs, instead forcing the user to change the name of one of the functions in one of the supertypes. Indeed, some OO systems do not permit multiple inheritance at all. In the object database standard (see Section 11.3), multiple inheritance is allowed for operation inheritance of interfaces, but is not allowed for EXTENDS inheritance of classes.
Selective inheritance occurs when a subtype inherits only some of the functions of
a supertype. Other functions are not inherited. In this case, an EXCEPT clause may
be used to list the functions in a supertype that are not to be inherited by the sub- type. The mechanism of selective inheritance is not typically provided in ODBs, but it is used more frequently in artificial intelligence applications. 20
20 In the ODMG model, type inheritance refers to inheritance of operations only, not attributes (see
11.2 Object-Relational Features: Object Database Extensions to SQL 369
Parts
» Fundamentals_of_Database_Systems,_6th_Edition
» Characteristics of the Database Approach
» Advantages of Using the DBMS Approach
» A Brief History of Database Applications
» Schemas, Instances, and Database State
» The Three-Schema Architecture
» The Database System Environment
» Centralized and Client/Server Architectures for DBMSs
» Classification of Database Management Systems
» Domains, Attributes, Tuples, and Relations
» Key Constraints and Constraints on NULL Values
» Relational Databases and Relational Database Schemas
» Integrity, Referential Integrity, and Foreign Keys
» Update Operations, Transactions, and Dealing with Constraint Violations
» SQL Data Definition and Data Types
» Specifying Constraints in SQL
» The SELECT-FROM-WHERE Structure of Basic SQL Queries
» Ambiguous Attribute Names, Aliasing, Renaming, and Tuple Variables
» Substring Pattern Matching and Arithmetic Operators
» INSERT, DELETE, and UPDATE Statements in SQL
» Comparisons Involving NULL and Three-Valued Logic
» Nested Queries, Tuples, and Set/Multiset Comparisons
» The EXISTS and UNIQUE Functions in SQL
» Joined Tables in SQL and Outer Joins
» Grouping: The GROUP BY and HAVING Clauses
» Discussion and Summary of SQL Queries
» Specifying General Constraints as Assertions in SQL
» Introduction to Triggers in SQL
» Specification of Views in SQL
» View Implementation, View Update, and Inline Views
» Schema Change Statements in SQL
» Sequences of Operations and the RENAME Operation
» The UNION, INTERSECTION, and MINUS Operations
» The CARTESIAN PRODUCT (CROSS PRODUCT) Operation
» Variations of JOIN: The EQUIJOIN and NATURAL JOIN
» Additional Relational Operations
» Examples of Queries in Relational Algebra
» The Tuple Relational Calculus
» The Domain Relational Calculus
» Using High-Level Conceptual Data Models
» Entity Types, Entity Sets, Keys, and Value Sets
» Relationship Types, Relationship Sets, Roles, and Structural Constraints
» ER Diagrams, Naming Conventions, and Design Issues
» Example of Other Notation: UML Class Diagrams
» Relationship Types of Degree Higher than Two
» Subclasses, Superclasses, and Inheritance
» Constraints on Specialization and Generalization
» Specialization and Generalization Hierarchies
» Modeling of UNION Types Using Categories
» A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions
» Data Abstraction, Knowledge Representation, and Ontology Concepts
» ER-to-Relational Mapping Algorithm
» Discussion and Summary of Mapping for ER Model Constructs
» Mapping EER Model Constructs
» The Role of Information Systems
» The Database Design and Implementation Process
» Use of UML Diagrams as an Aid to Database Design Specification 6
» Rational Rose: A UML-Based Design Tool
» Automated Database Design Tools
» Introduction to Object-Oriented Concepts and Features
» Object Identity, and Objects versus Literals
» Complex Type Structures for Objects and Literals
» Encapsulation of Operations and Persistence of Objects
» Type Hierarchies and Inheritance
» Other Object-Oriented Concepts
» Object-Relational Features: Object Database Extensions to SQL
» Overview of the Object Model of ODMG
» Built-in Interfaces and Classes in the Object Model
» Atomic (User-Defined) Objects
» Extents, Keys, and Factory Objects
» The Object Definition Language ODL
» Differences between Conceptual Design of ODB and RDB
» Mapping an EER Schema to an ODB Schema
» Query Results and Path Expressions
» Overview of the C++ Language Binding in the ODMG Standard
» Structured, Semistructured, and Unstructured Data
» XML Hierarchical (Tree) Data Model
» Well-Formed and Valid XML Documents and XML DTD
» XPath: Specifying Path Expressions in XML
» XQuery: Specifying Queries in XML
» Extracting XML Documents from
» Database Programming: Techniques
» Retrieving Single Tuples with Embedded SQL
» Retrieving Multiple Tuples with Embedded SQL Using Cursors
» Specifying Queries at Runtime Using Dynamic SQL
» SQLJ: Embedding SQL Commands in Java
» Retrieving Multiple Tuples in SQLJ Using Iterators
» Database Programming with SQL/CLI Using C
» JDBC: SQL Function Calls for Java Programming
» Database Stored Procedures and SQL/PSM
» PHP Variables, Data Types, and Programming Constructs
» Overview of PHP Database Programming
» Imparting Clear Semantics to Attributes in Relations
» Redundant Information in Tuples and Update Anomalies
» Normal Forms Based on Primary Keys
» General Definitions of Second and Third Normal Forms
» Multivalued Dependency and Fourth Normal Form
» Join Dependencies and Fifth Normal Form
» Inference Rules for Functional Dependencies
» Minimal Sets of Functional Dependencies
» Properties of Relational Decompositions
» Dependency-Preserving Decomposition
» Dependency-Preserving and Nonadditive (Lossless) Join Decomposition into 3NF Schemas
» Problems with NULL Values and Dangling Tuples
» Discussion of Normalization Algorithms and Alternative Relational Designs
» Further Discussion of Multivalued Dependencies and 4NF
» Other Dependencies and Normal Forms
» Memory Hierarchies and Storage Devices
» Hardware Description of Disk Devices
» Magnetic Tape Storage Devices
» Placing File Records on Disk
» Files of Unordered Records (Heap Files)
» Files of Ordered Records (Sorted Files)
» External Hashing for Disk Files
» Hashing Techniques That Allow Dynamic File Expansion
» Other Primary File Organizations
» Parallelizing Disk Access Using RAID Technology
» Types of Single-Level Ordered Indexes
» Some General Issues Concerning Indexing
» Algorithms for External Sorting
» Implementing the SELECT Operation
» Implementing the JOIN Operation
» Algorithms for PROJECT and Set
» Notation for Query Trees and Query Graphs
» Heuristic Optimization of Query Trees
» Catalog Information Used in Cost Functions
» Examples of Cost Functions for SELECT
» Examples of Cost Functions for JOIN
» Example to Illustrate Cost-Based Query Optimization
» Factors That Influence Physical Database Design
» Physical Database Design Decisions
» An Overview of Database Tuning in Relational Systems
» Transactions, Database Items, Read and Write Operations, and DBMS Buffers
» Why Concurrency Control Is Needed
» Transaction and System Concepts
» Desirable Properties of Transactions
» Serial, Nonserial, and Conflict-Serializable Schedules
» Testing for Conflict Serializability of a Schedule
» How Serializability Is Used for Concurrency Control
» View Equivalence and View Serializability
» Types of Locks and System Lock Tables
» Guaranteeing Serializability by Two-Phase Locking
» Dealing with Deadlock and Starvation
» Concurrency Control Based on Timestamp Ordering
» Multiversion Concurrency Control Techniques
» Validation (Optimistic) Concurrency
» Granularity of Data Items and Multiple Granularity Locking
» Using Locks for Concurrency Control in Indexes
» Other Concurrency Control Issues
» Recovery Outline and Categorization of Recovery Algorithms
» Caching (Buffering) of Disk Blocks
» Write-Ahead Logging, Steal/No-Steal, and Force/No-Force
» Transaction Rollback and Cascading Rollback
» NO-UNDO/REDO Recovery Based on Deferred Update
» Recovery Techniques Based on Immediate Update
» The ARIES Recovery Algorithm
» Recovery in Multidatabase Systems
» Introduction to Database Security Issues 1
» Discretionary Access Control Based on Granting and Revoking Privileges
» Mandatory Access Control and Role-Based Access Control for Multilevel Security
» Introduction to Statistical Database Security
» Introduction to Flow Control
» Encryption and Public Key Infrastructures
» Challenges of Database Security
» Distributed Database Concepts 1
» Types of Distributed Database Systems
» Distributed Database Architectures
» Data Replication and Allocation
» Example of Fragmentation, Allocation, and Replication
» Query Processing and Optimization in Distributed Databases
» Overview of Transaction Management in Distributed Databases
» Overview of Concurrency Control and Recovery in Distributed Databases
» Current Trends in Distributed Databases
» Distributed Databases in Oracle 13
» Generalized Model for Active Databases and Oracle Triggers
» Design and Implementation Issues for Active Databases
» Examples of Statement-Level Active Rules
» Time Representation, Calendars, and Time Dimensions
» Incorporating Time in Relational Databases Using Tuple Versioning
» Incorporating Time in Object-Oriented Databases Using Attribute Versioning
» Temporal Querying Constructs and the TSQL2 Language
» Spatial Database Concepts 24
» Multimedia Database Concepts
» Clausal Form and Horn Clauses
» Datalog Programs and Their Safety
» Evaluation of Nonrecursive Datalog Queries
» Introduction to Information Retrieval
» Types of Queries in IR Systems
» Evaluation Measures of Search Relevance
» Web Analysis and Its Relationship to Information Retrieval
» Analyzing the Link Structure of Web Pages
» Approaches to Web Content Analysis
» Trends in Information Retrieval
» Data Mining as a Part of the Knowledge
» Goals of Data Mining and Knowledge Discovery
» Types of Knowledge Discovered during Data Mining
» Market-Basket Model, Support, and Confidence
» Frequent-Pattern (FP) Tree and FP-Growth Algorithm
» Other Types of Association Rules
» Approaches to Other Data Mining Problems
» Commercial Data Mining Tools
» Data Modeling for Data Warehouses
» Difficulties of Implementing Data Warehouses
» Grouping, Aggregation, and Database Modification in QBE
Show more